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In magnetized, highly stratified astrophysical environments such as the Sun’s corona and solar
wind, Alfvénic fluctuations “reflect” from background gradients, enabling nonlinear interactions and
thus dissipation of their energy into heat. This process, termed “reflection-driven turbulence,” is
thought to play a crucial role in coronal heating and solar-wind acceleration, explaining a range of
detailed observational correlations and constraints. Building on previous works focused on the inner
heliosphere, here we study the basic physics of reflection-driven turbulence using reduced magnetohy-
drodynamics in an expanding box—the simplest model that can capture the local turbulent plasma
dynamics in the super-Alfvénic solar wind. Although idealized, our high-resolution simulations and
simple theory reveal a rich phenomenology that is consistent with a diverse range of observations.
Outwards-propagating fluctuations, which initially have high imbalance (high cross helicity), decay
nonlinearly to heat the plasma, becoming more balanced and magnetically dominated. Despite the
high imbalance, the turbulence is strong because Elsässer collisions are suppressed by reflection,
leading to “anomalous coherence” between the two Elsässer fields. This coherence, together with
linear effects, causes the turbulence to anomalously grow the “anastrophy” (squared magnetic po-
tential) as it decays, forcing the energy to rush to larger scales and forming a “1/f -range” energy
spectrum as it does so. At late times, the expansion overcomes the nonlinear and Alfvénic physics,
forming isolated, magnetically dominated “Alfvén vortex” structures that minimize their nonlinear
dissipation. These results can plausibly explain the observed radial and wind-speed dependence of
turbulence imbalance (cross helicity), residual energy, plasma heating, and fluctuation spectra, as
well as making a variety of testable predictions for future observations.

I. INTRODUCTION

The mechanisms that heat and accelerate the solar
wind remain mysterious, or at least controversial [1]. In
order to explain decades of in-situ spacecraft data, par-
ticularly local temperature measurements and the high
speeds of fast-wind streams, there must exist an energy
source to heat the plasma even at large distances from
the solar surface. A leading paradigm for explaining this
extended heating is Alfvénic turbulence, in which the
energy is provided by Alfvén waves launched from the
low solar atmosphere by photospheric motions or mag-
netic reconnection [2, 3]. As these waves propagate out-
wards, away from the Sun, they become turbulent, caus-
ing their energy to cascade to smaller scales and dissi-
pate [4–7]. The resulting turbulent heating increases the
plasma pressure, which, along with the wave pressure,
accelerates the solar wind away from the Sun [8–11].

Although plausible, particularly given the extended
turbulent-like fluctuations observed in the solar-wind
plasma [12–15], a particular difficulty with this model
lies in the robustness of Alfvénic fluctuations: in a ho-
mogenous plasma, Alfvén waves propagating in the same
direction do not interact with one another or damp out,

even at large amplitudes and/or when their wavelength
is well below the mean free path [16, 17]. Turbulence, as
likely needed to dissipate their energy, thus arises only
via interactions between the two “Elsässer” fields z±,
which are the counter-propagating linear eigenmodes in
a homogenous plasma [18–20]. With the Sun supplying
energy only in outwards-propagating waves dominated
by one Elsässer field, some source of the other Elsässer
field is needed to generate turbulence that could explain
the observed heating. One possible mechanism for en-
abling this process is reflection arising from the radial
variation in the background Alfvén speed vA [21, 22].
The turbulence that results due to this interaction be-
tween outwards and reflected waves is generally referred
to as “reflection-driven turbulence” [4]. Phenomenologi-
cal models and simulations suggest that the paradigm can
broadly explain many observed local and global features
of the solar wind [7, 23–28], although there remain im-
portant unresolved issues and questions [29–31]. Similar
mechanisms may also play a key role in other astrophysi-
cal systems with large density gradients and strong mag-
netic fields, particularly compact-object accretion flows,
which are known to possess hot, compact corona that are
likely fed by strong fluctuations in the disk below [32, 33].
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The goal of this work is to study reflection-driven tur-
bulence from the most basic standpoint possible, eluci-
dating the key features in a simplified setting. This dif-
fers from previous studies, which have usually used ei-
ther phenomenological models [5, 23, 24, 28, 34] or ra-
dially extended “flux-tube” simulations [6, 26, 27, 35,
36] to attempt to realistically match observed parame-
ters and regimes of the corona and solar wind. Both
perspectives—the basic and the realistic—are important,
but we believe the former has been neglected in previ-
ous literature. Rectifying this omission is especially rel-
evant because reflection-driven turbulence is neither de-
caying nor forced (the two limits usually considered in
turbulence studies), meaning that care is needed when
applying intuitions and ideas from broader turbulence
research.

Our approach is to use the so-called “expanding box
model” (EBM) [37], which tracks a small parcel of plasma
as it flows away from the Sun. The version of the EBM
we use applies to regions beyond the Alfvén radius (or
surface) RA where the solar-wind speed U overtakes the
Alfvén speed and becomes approximately constant with
radius R. This local approach also differs from most pre-
vious work on reflection-driven turbulence (although the
EBM has proved important in other solar-wind and tur-
bulence contexts [38–43]). A disadvantage of the EBM
is that our results cannot be applied directly to the
solar-wind acceleration region (although some aspects
may prove translatable); an advantage is the simplicity
of using a homogenous, periodic domain, which allows
for much higher numerical resolutions and decreases the
number of free parameters while capturing many of the
essential physical ingredients. In addition, our results
seem to explain a variety of disparate observations from
in-situ spacecraft measurements at R > RA, some of
which have been missed in previous theoretical works
because of the focus on lower-altitude acceleration re-
gions. We argue that these observational comparisons
provide persuasive evidence that reflection-driven turbu-
lence controls important aspects of solar-wind turbulent
evolution beyond RA, as well as providing a number of
testable and falsifiable predictions for future works.

As well as the contributions described above, our main
novel result is that reflection-driven turbulence precipi-
tates a strong inverse energy transfer as it decays. This
feature, which we argue is a consequence of an anoma-
lous conservation law for the squared parallel magnetic
vector potential (“anastrophy”), causes initially small-
scale outwards-propagating fluctuations to rush to large
scales as they decay, forming a ∝k−1

⊥ spectrum in the
process (here k⊥ is the wavenumber perpendicular to
the background magnetic field). This suggests the ob-
served large-scale fluctuations that dominate the solar-
wind turbulence spectrum can develop in situ as the wind
propagates, which may be important if low-frequency
waves are unable to effectively propagate through the
chromosphere-coronal transition due to large local gradi-
ents in the Alfvén speed [22, 27, 44, 45]. Another new

result concerns the asymptotic evolution of the turbu-
lence at large radii, where it becomes governed by large-
scale magnetically dominated “Alfvén vortices” [46, 47].
These structures, which are approximate nonlinear solu-
tions and so dissipate into heat only very slowly, tend to
freeze into the plasma at late times, growing continuously
as the plasma expands.

The remainder of the paper is organized as follows.
§ II describes the basic expanding-box reduced magne-
tohydrodynamic (RMHD) model that we use through-
out this work. We outline the useful “wave-action” form
(§ IIA 1), which facilitates analysis by factoring out the
linear WKB wave evolution brought about by expansion,
before explaining the numerical method, key parameters
of the system, and the initial conditions used for the sim-
ulations. § III then presents a brief overview of how the
turbulence evolves, focusing on globally averaged quan-
tities such as the energy, imbalance (normalized cross
helicity), and residual energy. We will see that the evo-
lution splits into two distinct phases, evolving from one
nonlinear solution of homogenous MHD (pure outwards
propagating waves, high imbalance) to another (magneti-
cally dominated Alfvén vortices). In § IV we examine the
imbalanced phase, starting with a simple phenomenol-
ogy based on previous works [5, 23, 24] to understand
the observed dynamics. We compare these phenomeno-
logical ideas to the simulations’ time evolution (§ IVA),
spectra (§ IVB), and frequency spectra (§ IVC), diag-
nosing how the suppression of wave collisions leads to
“anomalous coherence,” enabling strong turbulence de-
spite the high imbalance. In § IVD, we then examine
the inverse transfer in detail, presenting a theoretical ar-
gument based on anastrophy to explain the observed re-
sults. The balanced, magnetically dominated phase is ex-
amined in §V, starting with a focus on linear expansion-
dominated (long-wavelength) physics (§VA). This linear
physics controls the late-stage evolution of the system
because the system self organizes to minimize its nonlin-
earity, explaining the strong dominance of magnetic over
kinetic energy and various other features of its evolution
(as well as a number of solar-wind observations). That
this system does indeed morph into nonlinear solutions is
proved numerically (and argued theoretically) by directly
fitting structures that grow in the simulation (§VC).

The paper contains a lot of detail about various as-
pects of the evolution. Therefore in § VI we provide an
extended summary of the observational relevance of our
findings. This covers explanations of various existing ob-
servational results, such as the observed radial evolution
and wind-speed dependence of imbalance and residual
energy, as well as making predictions that can be tested
in future works to better understand the successes and
limitations of the reflection-driven turbulence model. We
conclude in §VII.
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II. METHODS

A. The expanding reduced MHD model

We wish to describe the turbulent dynamics of a
plasma advected by an expanding wind and threaded by
a mean magnetic field B using the simplest possible for-
malism. We therefore assume that B is radial, and that
the fluctuations in the total fieldB and plasma velocity u
are transverse and non-compressive, with characteristic
scales well above the ion gyroscale (i.e., the fluctuations
are polarized like shear-Alfvén waves). We assume that
the mean flow of the wind U is also radial, constant,
and much larger than the Alfvén speed vA ≡ |B|/

√
4πρ,

where ρ is the mass density of the plasma. These as-
sumptions about u and B apply reasonably well to the
solar-wind plasma in regions with MA ≡ |U |/vA ≳ 1
(i.e., beyond the Alfvén point) and where the Parker spi-
ral is still well aligned with the radial direction [48]. Even
with such simplifications, simulating such dynamics us-
ing an absolute frame of reference and over a large radial
distance remains extremely costly in terms of computer
power [26, 35, 36]. We circumvent this difficulty by con-
sidering the turbulence dynamics in a frame co-moving
with the spherically expanding flow—the so-called ex-
panding box model (EBM) [37]. Assuming that the do-
main is small compared to the heliocentric distance, the
curvature of surfaces perpendicular to the radially ex-
panding flow can be neglected, allowing the use of Carte-
sian coordinates and periodic boundary conditions in all
three directions. The resulting savings in numerical cost
are redeployed to resolve the turbulence across a range
of scales of unprecedented breadth.

These approximations lead to equations that take the
form of standard “reduced MHD” (RMHD) [49, 50], with
two modifications. First, there appear additional linear
terms proportional to U⊥, which is the part of the mean
radial velocity perpendicular to the radial direction at
the centerline of the simulation domain, which acts to
expand the domain as it moves outwards (note that the
non-radial part of B can be neglected because |U | ≫ vA
and due to the small spatial domain). Second, the per-
pendicular gradient operator is modified to account for
the increasing lateral stretching of the plasma with dis-
tance: ∇̂ ≡ (a−1∂x, a

−1∂y, ∂z), where we use the local-
box spatial coordinates (x, y, z) and align the z axis with
the outwards radial direction at the centerline of the sim-
ulation domain. Here a is defined as the heliospheric dis-
tance R of the co-moving frame, normalized by the initial
radial distance R0 (equivalently, it is the perpendicular
size of the domain):

a(t) =
R(t)

R0
=

R0 + Ut

R0
= 1 + ȧt, (1)

where ȧ = ∂a/∂t = U/R0 is a constant for constant U .
Noting that U⊥ = (ȧ/a)(xx̂ + yŷ), one finds that the
magnetic field, B = B +B⊥ = Bz ẑ+B⊥, and the part

of the perpendicular flow velocity that remains after the
Galilean transformation, u⊥ = u−U , evolve as [37]

du⊥

dt
+

∇̂⊥p

ρ
− B · ∇̂B⊥

4πρ
= −u⊥ · ∇̂⊥U⊥

= − ȧ

a
u⊥, (2)

dB

dt
−B · ∇̂⊥u⊥ = −B∇̂⊥ ·U⊥ +B⊥ · ∇̂⊥U⊥

= −2
ȧ

a
Bz ẑ−

ȧ

a
B⊥, (3)

where d/dt = ∂/∂t+u⊥ ·∇̂⊥. The total pressure p, which
includes both magnetic and thermal pressures, cancels
the compressive part of the nonlinear terms to enforce
the incompressibility of the motions ∇̂⊥ · u⊥ = 0 [50].
Defining the subscript 0 to refer to a quantity at t = 0
(a = 1), conservation of mass and magnetic flux imply
ρ = ρ0/a

2 and Bz = Bz0/a
2 (the latter being the solu-

tion of the ẑ component of (3)), so that vA = vA0/a [37].
Note that because ρ = ρ0/a

2, the perpendicular friction-
like term in (3) associated with the spherical expansion
(−ȧ/aB⊥) vanishes if one instead expresses the perpen-
dicular magnetic field in velocity units b⊥ = B⊥/

√
4πρ

using ∂tb⊥ = (4πρ)−1/2∂tB⊥ + ȧ/a b⊥. Because u⊥ is
damped via −ȧ/au⊥, this produces differential damping
of the perpendicular magnetic and kinetic fluctuations
during the radial transport.
The most important impact of expansion is that it

causes Alfvénic reflection. This can be seen by consider-
ing the Elsässer variables z± = u⊥ ± b⊥, which evolve
as

∂z±
⊥

∂t
± vA

∂z±
⊥

∂z
+ z∓

⊥ · ∇̂⊥z
±
⊥ +

∇̂⊥p

ρ
= −1

2

ȧ

a

(
z+
⊥ + z−

⊥
)
.

(4)
We have taken B to point in the negative radial direction
(Bz < 0 with vA = |Bz|/

√
4πρ), so that z+

⊥ perturbations
propagate outwards in the absence of reflection. We see
that the additional linear terms proportional to U⊥ ap-
pearing in Eqs. (3) and (2) couple z+

⊥ and z−
⊥ perturba-

tions through the final term in Eq. (4), with important
consequences for their nonlinear evolution.

1. “Wave-action” form

It is convenient to rewrite equations (4) in terms of the
so-called “wave-action” Elsässer variables [21], defined as

z̃± .
= a1/2z±

⊥ ∝
z±
⊥√
ωA

, (5)

where ωA = kzvA is the Alfvén frequency of a mode
of wavenumber kz. The second expression emphasizes
the relationship to the wave-action density [51], which
is |z±|2/ωA for a population of z± fluctuations at some
kz, and is conserved in the limit of high-frequency/short-
wavelength waves. This highlights how the extra a−1/2
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factor compensates the decay of the z±
⊥ that arises be-

cause of the decreasing Alfvén frequency as the system
expands, making z̃± the natural variables in which to
consider turbulent-decay dynamics. Equations (4) then
take the form,

ȧ
∂z̃±

∂a
±vA

∂z̃±

∂z
+

1

a1/2

(
z̃∓ · ∇̂⊥z̃

± +
∇̂⊥p

ρ

)
= − ȧ

2a
z̃∓.

(6)
These equations can be equivalently derived from the
“flux-tube” RMHD equations used by Refs. [26, 36] (see
also [23, 24]) by identifying their g and f with z̃+ and z̃−,
respectively, assuming vA ≪ U and η

.
= ρ/ρ|U=vA ≪ 1,

and converting ȧ∂/∂a in (6) into the derivative in the
stationary frame ∂/∂t+ U∂/∂R.

For the remainder of this article we will usually use
wave-action variables with lengths and gradients defined
in the co-moving frame, which does not change with a.
With this in mind, it is sometimes helpful to explic-
itly expand ∇̂⊥ = a−1∇̃⊥ and vA = vA0/a, in order
to remove the hidden a-dependence of these terms in
Eq. (6). Written in terms of ln a, Eq. (6) takes a form
that is similar to standard RMHD in a fixed-size domain,
but with reflection terms and a time-variable coefficient
a−1/2 = e− ln a/2 multiplying the nonlinear term:

ȧ
∂z̃±

∂ ln a
±vA0

∂z̃±

∂z
+

1

a1/2
z̃∓ ·∇̃⊥z̃

±+∇̃⊥p̃ = − ȧ

2
z̃∓, (7)

where p̃ = p/ρ enforces ∇̃⊥ · z̃∓ = 0. It is often helpful
to consider the turbulent evolution from the perspective
of Eq. (7), multiplying lengths by a and using Eq. (5) to
convert back to physical quantities as need be. We sim-
ilarly define wave-action velocities and magnetic fields,
ũ⊥ = a1/2u⊥ and b̃⊥ = a1/2b⊥, respectively.

Throughout this article we use the tilde ·̃ to denote
both wave-action-normalized fields and length scales de-
fined in the co-moving frame (like ∇̃⊥). Because we have
not transformed time in deriving Eq. (6) or (7), time-
scales and frequencies are not denoted with a tilde, and
can be equivalently defined in either the co-moving or
physical frame with either wave-action or physical vari-
ables, as convenient. The same is true for dimensionless
quantities and parallel length scales.

2. Conserved quantities

Unlike homogeneous RMHD, individual wave-action
Elsässer energies Ẽ± ≡ ⟨|z̃±|2⟩/4 are not conserved in the
presence of expansion. (Here and in the following, angle
brackets ⟨. . . ⟩ denote a volume average over the expand-
ing box in the co-moving frame.) The reflection terms can
act as a source or a sink of wave-action energy, depending
on the sign of the correlation between the Elsässer fields,
or residual energy Ẽr = ⟨z̃+ · z̃−⟩/2 = Ẽu − Ẽb (we
define also the wave-action kinetic and magnetic ener-
gies, Ẽu = ⟨|ũ⊥|2⟩/2 and Ẽb = ⟨|b̃⊥|2⟩/2, respectively).

Specifically, one finds from Eq. (6),

ȧ
∂Ẽ±

∂a
= − ȧ

4a
⟨z̃+ · z̃−⟩ = − ȧ

2a
Ẽr (8)

In contrast, one sees that the reflection sources cancel
out for the wave-action cross-helicity Ẽc = Ẽ+ − Ẽ− =
⟨ũ⊥·b̃⊥⟩, which therefore remains, as in the homogeneous
case, an ideal invariant [52],

∂Ẽc

∂a
= 0. (9)

We note that although the fluctuation energy is not con-
served, one can show using the full system of equations
(without making the expanding-box approximation) that
the energy gained or lost by the fluctuations is compen-
sated by an equal and opposite change in the energy of
the background flow, with Eqs. (8) and (9) resulting from
total energy and cross-helicity conservation under appro-
priate assumptions [53, 54]. It is also helpful to define

the total energy Ẽ = Ẽ+ + Ẽ− = Ẽu + Ẽb.

B. Numerical method and setup

Taking advantage of the periodic boundary conditions,
we solve Eqs. (2) and (3) (or equivalently, Eq. (4), (6),
or (7)) with a modified version of the Fourier pseudo-
spectral code TURBO [55]. We advance in time with a
third-order modified Williamson algorithm (a four-step,
low-storage Runge–Kutta method [56]) for the nonlinear
terms and implicitly evaluate the linear terms exactly.
The simulation domain is a cube of size L⊥ = Lz = 2π
with a resolution n2

⊥×nz. Note that the system (6) has a
rescaling symmetry, whereby all relative fluctuation am-
plitudes can be arbitrarily rescaled as long as the ratios
of all perpendicular to parallel scales are rescaled by the
same amount. Therefore, the parallel and perpendicular
units of length are independent. The code units are set
by this and by vA0 = 2π. Nonlinear terms are partially
dealiased using a phase-shift method [57]. The main sim-
ulations presented below will use a spatial resolution of
n2
⊥ × nz = 15362 × 128 for the full simulation evolution,

but are refined to n2
⊥×nz = 81922×256 around specified

radii of interest and allowed to evolve briefly, in order to
resolve spectra at smaller scales.
We add a form of dissipation (“hyperviscosity”)

−ν±⊥∇̂6
⊥z̃

± − ν±z ∂6
z z̃

± (10)

to the right-hand side of Eq. (6) to absorb the turbulent
energy at small scales. The hyper-viscosity coefficients
ν±⊥ and ν±z are adaptive, viz., they are re-evaluated at
each time step to ensure that dissipation occurs near the
smallest scales of the grid in order to maximize the iner-
tial range. This is is necessary because the turbulent am-
plitudes change by orders of magnitude over the course
of the simulations, thus changing the dissipation scale for
a given (fixed) hyperviscosity significantly. The method
is explained in more detail App. B.
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1. Simulation parameters

In the expanding RMHD equations, there are three
ratios of timescales that will prove important for the dy-
namics. We will define these in more detail below, but
feel it useful to introduce the notation here: χA will de-
note the usual ratio of Alfvénic to nonlinear timescales
[58, 59]; χexp, the ratio of the expansion to nonlinear
timescales; and ∆ = χexp/χA, the ratio of the expansion
to Alfvénic timescales. Because of the rescaling symme-
try of the RMHD equations, aside from resolution and
dissipation properties, two of these three parameters set
the important parameters of a given simulation. It is
most natural to set χexp and χA via the initial condi-
tions (discussed below) and fix the ratio of the box-scale
Alfvén frequency (ωA,box = 2πvA/Lz) to the expansion
rate,

∆box
.
=

ωA,box

ȧ/a
=

2π

Lz

vA0

ȧ
. (11)

Note that ∆box remains constant throughout the evolu-
tion because vA ∝ 1/a. In all simulations, we will take
∆box = 10. Using ȧ/a = U/R (see Eq. (1)), this implies
that the box has physical size

Lz =
2π

10
R
vA0

U
≈ 5.1× 106km

MA

3

R

35R⊙
, (12)

where we have chosen physical values that are charac-
teristic of early Parker Solar Probe passes [60]. This
scale corresponds to structures that are advected past
the spacecraft at frequency f = U/Lz ≈ 5.9 ×
10−5Hz (R/35R⊙)

−1(MA/3)
−1, which is below the ob-

served correlation scale of the turbulence, as desired. Be-
cause MA ∝ 1/R and U is constant in the super-Alfvénic
wind, this minimum resolved frequency remains constant
as the simulation evolves, although the correlation scale
is observed to increase.

Note that the choice of ∆box can be equivalently un-
derstood as setting the resolution in kz of the simula-
tion: with infinite spatial resolution, a longer box, which
contains lower kz modes, is identical to a shorter box
with smaller ∆box. It is also of note that there exist
kz = 0 two-dimensional modes, which do not propagate,
unlike the other modes in the box. While these are, in
some respects, an artefact of the expanding box’s peri-
odic boundary conditions, we argue below that they are
capturing important physical effects and should not be
artificially excluded (see §V).

2. Initial conditions

Rather than realistically simulate a patch of solar wind
as it propagates outwards, the goal of this work is to
distill and understand theoretically the key physical fea-
tures of reflection-driven turbulence. Therefore, our ini-
tial conditions are idealized and designed to understand

the model itself, on the assumption that this is a pre-
requisite for understanding the physical processes it at-
tempts to represent. Anticipating the result that the
correlation scales of the turbulence will increase signif-
icantly as it evolves, it is thus important to start with
fluctuations on scales well below the box scale in order
to avoid artificially constraining the system’s evolution.
We choose to obtain the initial z̃+ fields from a balanced
RMHD simulation evolved into its statistically station-
ary turbulent state, loosely motivated by the idea that
outwards Alfvénic fluctuations could “escape” into the
corona through an effective high-pass filter from a region
of nearly balanced stronger turbulence [61] (although, of
course, the EBM is formally valid only outside the Alfvén
point by which point the turbulence will have evolved
[26, 35]). The forcing of this balanced simulation is lo-
cal in Fourier space, acting on all the modes within the
ring k⊥ ∈ 2π/L⊥ [99.5, 100.5] and |kz| = 2π/Lz, and is
designed so as to keep the rate of injection of energy con-
stant with the amplitude needed for critical balance [58].
This creates initial fluctuations with a correlation scale
modestly above the forcing scale, with a perpendicular
correlation length L+ ≈ L⊥/75 and parallel correlation
length ≈Lz. In the infra-red range (scales larger than the
perpendicular correlation length), the initial energy spec-
trum scales approximately as ∝k⊥ in accordance with
theoretical expectations [62]. We use the z̃+ field thus
obtained to initialize the z̃− one by setting z̃− = −κz̃+

with κ such that 1 − σc = 1 × 10−4 (this choice is not
of great importance because the system rapidly self ad-
justs).

Given this choice of a spectrum of fluctuations, the
only remaining parameter of interest is the RMHD fluc-
tuation amplitude, which, as shown below, has a strong
impact on the turbulence evolution. Given the rescal-
ing symmetry discussed above, this amplitude should
be thought of as controlling the ratio of the nonlinear
timescale τ∓nl ∼ (k⊥z

±)−1 = a−3/2(k̃⊥z̃
+)−1 to the linear

timescales (k∥vA)
−1 and a/ȧ, as opposed to directly set-

ting the physical turbulent amplitude z+/vA (or |B⊥|/B
or |u⊥|/vA). Accordingly, we set

χexp0
.
=

k⊥0z
+
rms0

ȧ/a
and χA0

.
=

k⊥0z
+
rms0

kz0vA
(13)

as simulation parameters by rescaling z̃+ by the required
amount. Here k⊥0 and kz0 are the initial inverse correla-
tion lengths, z+rms0 is the initial root-mean-square (rms)
fluctuation amplitude, and the ratio χexp0/χA0 = ∆box

is fixed to be 10 for all simulations as described above
(i.e., rescaling z̃+ sets both χA0 and χexp0 because we
have already fixed ∆box). We shall see that because
they have stronger nonlinearity, simulations with larger
χexp0 remain in the strongly nonlinear regime for longer,
thus displaying more clearly the relevant power-law be-
havior and clarifying the analysis. Most figures and
discussion will thus focus on the highest-χ case run,
which has χexp0 = 960 (χA0 = 96) and a resolution
n2
⊥×nz = 15362×256. This value of χexp0 is rather large
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compared to the solar wind around RA at the correlation
scale of the turbulence (see §VI) but useful nonetheless
for understanding the key physics. We have run a series
of simulations down to χexp0 = 0.75 and will show some
of these for comparison.

This method of constructing initial conditions, while
straightforward and well controlled, has the downside of
placing the plasma into an artificial “super-critically bal-
anced” state (χA ∼ k⊥z

+/k∥vA > 1). The consequence
is that, over a relatively short transient initial phase as
the fields start evolving nonlinearly, neighboring planes
along the ẑ direction decorrelate and develop small par-
allel scale fluctuations until χA ∼ 1, establishing criti-
cal balance. This transient process generates a flat k∥
spectrum (white noise) up to the parallel scale at which
k∥vA balances the nonlinear mixing, which is the Fourier-
space hallmark of critical balance [62]. This process oc-
curs over a timescale comparable to the nonlinear time at
each scale, which is rapid compared to the time it takes
the system to decay and change regimes, so we believe
this choice does not strongly impact our results. How-
ever, future work should explore the effect of this choice,
other initial conditions, and ∆box in more detail in order
better understand the impact of our choices.

III. BASIC EVOLUTION

Starting from the initial conditions described above,
we evolve the system with a (equivalently, with time), up
to a = 1000. While this would correspond, in principle
to an extremely large physical radius [R = 1000RA ≈
70AU(RA/15R⊙)], we reiterate that we are deliberately
exploring more extreme parameters in order to better
characterize the physics of reflection-driven turbulence.
For more realistic initial conditions with lower χexp0, the
behavior and transitions we describe below will occur at
smaller a.

As illustrated in Fig. 1, which shows important aspects
of how simulations with different initial amplitudes (χA0)
evolve with a, the system’s evolution is naturally divided
into two distinct phases, discussed separately in § IV and
§ V below. Following a short initial transient, when z−

and the parallel scales rapidly adjust (see above), the
first “imbalanced” phase involves turbulence where the
nomalized cross helicity, or imbalance,

σc
.
=

Ẽ+ − Ẽ−

Ẽ+ + Ẽ−
=

Ẽc

Ẽ
, (14)

is almost maximal (unity), as in the initial conditions. In
the strong nonlinear regime (χA0 = 96; solid lines in the

left panel of Fig. 1), the turbulent energy decays as Ẽ ≈
Ẽ+ ∝ a−1, signalling turbulent heating of the plasma.
In contrast, in the second “magnetically dominated” or
balanced phase, which starts at around a ≈ 80 for the
χA0 = 96 simulation, σc approaches 0 with Ẽ+ ≈ Ẽ−,
and surprisingly, Ẽ starts growing in time. This is a

consequence of the system developing a large negative
normalized residual energy,

σr
.
=

Ẽu − Ẽb

Ẽu + Ẽb
=

Ẽr

Ẽ
, (15)

which, as seen from Eq. (8), can cause Ẽ to grow as Ẽ ∝ a
(as observed) in the absence of dissipation. We show this
evolution graphically with the “circle plot” in the right-
hand panel of Fig. 1. This illustrates the evolution of σc

and σr during the radial transport [63], which are con-

strained by the relationship between Ẽ±, Ẽu, and Ẽb to
lie within the circle σ2

c + σ2
r = 1. The fact that the evo-

lution remains near the edge of the circle indicates that
the fields maintain a high level of “Elsässer alignment”
between z̃+ and z̃−, with

σθ
.
=

⟨z̃+ · z̃−⟩
⟨|z̃+|2⟩1/2⟨|z̃−|2⟩1/2

=
σr√
1− σ2

c

, (16)

close to −1 in the later stages of the simulation (the iso-
contours of σθ are shown by solid lines in Fig. 1). This
strong alignment is likely primarily a consequence of the
reflections, which generate z̃− fluctuations that are per-
fectly aligned with −z̃+, although the mutual shearing of
the Elsässer fields is also known to generate aligned fluc-
tuations even in homogeneous Alfvénic turbulence [53].
The simulation’s evolution bears a striking resemblance
to the joint distribution of normalized cross helicity and
residual energy observed in highly Alfvénic fast-solar-
wind streams [63–65], providing good evidence that, de-
spite the drastic approximations involved with our model,
it captures some of the key physics of solar-wind turbu-
lence.
The properties of the turbulence change dramatically

between the two phases, as illustrated by the perpen-
dicular snapshot of z̃± shown in Fig. 2. Most obvi-
ously, the turbulence dramatically increases in scale with
time, starting from the very small scales of the initial
conditions (top panels) to reach nearly the box scales
by the latest times (bottom panels). We will argue be-
low that this is a consequence of the anomalous turbu-
lent growth of “wave-action anastrophy” during the im-
balanced phase, which significantly constrains the tur-
bulence as it decays, forcing it to rush to larger scales
and form a split cascade. At early times, the structures
in z̃+ and z̃− are rather different, with different dom-
inant scales, but as the turbulence enters the magnet-
ically dominated phase (middle panel) the two become
more similar as it becomes balanced. A key change (not
shown in Fig. 2), is that the turbulence becomes more
two-dimensional at larger a, with structures across a wide
range of kz at earlier times (top panel) giving way to
predominantly kz = 0 modes by the a = 250 snapshot
shown in the bottom panel. While true kz = 0 modes
are of course an artefact of the periodicity of the EBM,
their key feature as pertains to reflection turbulence is
that they are expansion dominated and do not propa-
gate, unlike Alfvén waves. Since this is the case for any
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FIG. 1. Left panel: Radial evolution of wave action energies Ẽ+ (red lines) and Ẽ− (blue lines) for three simulations with
different amplitude initial conditions. Solid lines show our highest-amplitude χexp0 = 960 (χA0 = 96) simulation, dash-dotted
lines show the χexp0 = 7.5 (χA0 = 0.75) simulation, and dotted lines show the χexp0 = 0.75 (χA0 = 0.075) simulation in the

weak regime. We normalize each curve to its initial Ẽ+ to facilitate comparison and the dotted-grey lines indicate various
power laws for reference (see text). Right panel: Parametric representation of σr and σc during the evolution of the χA0 = 96
simulation. The colors (on a logarithmic scale) indicate the normalized radial distance a. Solid lines represent contours of
constant σθ as labelled (see text).

sufficiently long-wavelength mode, even in non-periodic
settings or the real solar wind (specifically, those with
∆ = kzvA/(ȧ/a) < 1/2; see §§ V), we argue that these
dynamics are physical and likely have already been ob-
served in the solar wind. As seen also in the left panel
of Fig. 1, there is little turbulent heating in this phase,
which (we will show) occurs because the circular struc-
tures approach local nonlinear “Alfvén vortex” solutions
[46, 47], which slows down their evolution significantly,
impeding their dissipation.

We now explore the two phases in more detail, at-
tempting to diagnose and understand key features of
their turbulence to make detailed predictions for solar-
wind observations.

IV. IMBALANCED PHASE

In this section, we explore the turbulence in the im-
balanced phase of the simulations, which applies when
z̃+ ≫ z̃−, for a ≲ 50 in the χA0 = 96 simulation
(see Fig. 1). Based on Figs. 1 and 2, the key features
of this phase that we wish to understand are (i) the

power-law evolution of Ẽ±, which sets the overall heating
(turbulent-decay) rate as a function of radial distance,
and (ii) the cause of the significant increase in the fluc-
tuations’ scale during their evolution. To interpret the

basic time evolution of Ẽ+ and Ẽ−, we first (§ IVA) re-
view and assess phenomenological ideas based on Ref. [5],
which have been used in a number of previous works to
predict and understand reflection-driven turbulence both
in- and outside the Alfvén point [11, 23, 24, 36]. While
the phenomenology is consistent with some general fea-
tures of the observed time evolution (§ IVA) and spectra
(§ IVB), we will find some important differences that
we cannot, at this point, satisfactorily explain. Whether
these signal fundamental issues with the theoretical basis
of the model, or just more minor discrepancies, remains
unclear. In this discussion, we will see that feature (ii)
(the rapid increase in the the scale of the fluctuations)
happens to not influence the decay, so it can be dis-
cussed separately. We argue in § IVD that this feature
arises from the surprising property of anomalous turbu-
lent “wave-action anastrophy” growth, which constrains
the dynamics and forces z̃+ to rush to large scales as it
decays via a split cascade.

A. Turbulent decay phenomenology

The basic idea of the phenomenological model is
to treat the dominant z̃+ fluctuations as a standard
decaying-turbulence problem, while z̃− is effectively
strongly forced by reflection and damped by turbulence.
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| z̃+⊥ | / | z̃+⊥ |rms | z̃−⊥ | / | z̃−⊥ |rms

| z̃±
⊥ | / | z̃±

⊥ |rms

| z̃±
⊥ | / | z̃±

⊥ |rms

| z̃±
⊥ | / | z̃±

⊥ |rms

FIG. 2. Snapshots of the Elsässer fields |z̃+| (left panels) and |z̃−| (right panels) in the plane perpendicular to the mean
magnetic field for three different radial distances. The top panels illustrate a = 5 during the imbalanced decay phase; the
middle panels show a = 50, which is shortly before the transition to the balanced phase; the bottom panels show a = 250 in
the balanced, magnetically dominated regime. This simulation has a resolution of n2

⊥ × nz = 81922 × 256 and is initialised by
progressively refining the n2

⊥ × nz = 15362 × 256 simulation that was run from a = 1 to a = 1000.
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In more detail, because Ẽ+ ≫ Ẽr when Ẽ+ ≫ Ẽ− (as
assumed), reflection is negligible for the z̃+ field, and
consequently, for the forcing/damping of the wave-action

energy (see Eq. (8)). This implies Ẽ+ is approximately
ideally conserved during this phase and its turbulent
decay occurs only due to non-linear coupling with z̃−.
Throughout this phase, the z̃− fluctuations, which are
forced by reflections, remain very low amplitude; there-
fore a-priori, one might expect z̃+ fluctuations to be in
the weak regime. However, we assume [4, 36, 62, 66],
providing detailed numerical justification below (§ IVC),
that the z̃− fluctuations remain “anomalously coherent”
with the z̃+, because their forcing via reflection is highly
coherent (∝ − z̃+) thus “dragging” z̃− along with the
z̃+ in time. The consequence is twofold: first, by mov-
ing into the frame that propagates outwards with z̃+,
it allows one to ignore the Alfvénic propagation terms
for both z̃+ and z̃−; second, it allows the estimation
of turbulent cascade times using the standard nonlinear
turnover times (unlike for weak turbulence). Therefore,
the turbulent decay time τ± of z̃± is

τ−1
∓ ∼ a−3/2 z̃

±

λ̃±
=

z±

λ± , (17)

where λ̃± are the characteristic perpendicular scales of
z̃± in the co-moving frame that govern the decay/growth
of z̃∓, and z̃± represents the rms amplitude of z̃±. Vari-
ables without the tilde are in the physical frame with
physical units, showing how the a−3/2 factor arises from
the use of wave-action variables.

Based on these assumptions, we compute the evolution
of z̃− via the balance of reflection and nonlinear decay,
ignoring the Alfvénic and time-evolution terms (the lat-
ter is small, as justified below). The evolution of z̃+ re-
sults from its nonlinear turbulent decay via the z̃− that
it has sourced. The scheme then yields the following phe-
nomenological evolution equations for Ẽ± [5]:

ȧ
∂Ẽ+

∂a
∼ − 1

a3/2
z̃−

λ̃−
Ẽ+, (18a)

1

a3/2
z̃+

λ̃+

Ẽ− ∼ ȧ

a
|Ẽr| ∼ ȧ

a
|σθ|z̃+z̃−. (18b)

Writing (18b) for z̃− instead gives

z̃− ∼ ȧa1/2λ̃+|σθ|, (19)

whereby we see the interesting feature that the ampli-
tude of z̃− is independent of that of z̃+ (other than indi-

rectly through λ̃+ and σθ). This occurs because z̃+ acts
to both drive and dissipate the z̃− energy. This inde-
pendence from the z̃+ spectrum also suggests that, with
various caveats discussed below (§ IVB), it could be rea-
sonable to reinterpret the balance of reflection and non-
linear damping as applying at each scale separately, thus
replacing the λ̃+ in Eq. (19) with k̃−1

⊥ and making z̃− the

rms amplitude of the z̃− increment across a distance k̃−1
⊥

in the perpendicular plane. This gives z̃−(k⊥) ∝ k−1
⊥ , or

a ∝k−3
⊥ energy spectrum for z̃−. We can insert Eq. (19)

into Eq. (18a) to obtain the total energy (Ẽ ≈ Ẽ+) decay,

∂ ln Ẽ+

∂a
∼ −1

a

λ̃+

λ̃−
σθ. (20)

Several other points are worth noting. First, the
anomalous coherence will break down once the effect of
z̃+ on z̃− enters the weak regime (in which case z̃− can
propagate away from its z̃+ source). The phenomenology
thus requires

χA
.
=

(τ−)
−1

vA/ℓ∥
∼ z̃+/λ̃+

a1/2vA0/ℓ∥
≳ 1 (21)

where ℓ∥ is the parallel correlation length (χA > 1 may
be unphysical for other reasons, but the phenomenol-
ogy itself is fundamentally 2D, ignoring ℓ∥). Second,

we verify that the neglect of ∂tz̃
− is consistent, so long

as anomalous coherence allows us to ignore the Alfvénic
propagation of z̃− in the frame of z̃+, by noting that
∂tz̃

− ∼ (ȧ/a)z̃− is a factor ∼z̃−/z̃+ smaller than the
reflection term in Eq. (18b). Third, there exists an ad-
ditional constraint implicit in (18), which comes from
noting that Eq. (19) is equivalent to

z̃− ∼ z̃+

χexp
, (22)

where

χexp
.
=

(τ−)
−1

ȧ/a
∼ z̃+/λ̃+

a1/2ȧ
(23)

is the ratio of the nonlinear damping to reflection rates.
Thus, the phenomenology can only be valid for suffi-
ciently large-amplitude z̃+ with χexp ≫ 1, irrespective of
the fluctuation’s parallel scale, and we expect the transi-
tion to the balanced regime to occur when Ẽ+ decays suf-
ficiently so that χexp ∼ 1. χexp will feature prominently
below as the key parameter that controls the transition
from the imbalanced to balanced phase.
Previous treatments [11, 23, 24] have taken λ̃+ and λ̃−

in Eqs. (18) to be the same and constant in time in the co-
moving frame. But, the argument about the z̃− balance
and spectrum in the previous paragraph, as well as decay-
ing turbulence theory in general [67], suggest that there
is no reason to expect this to be the case. Indeed, if the
z̃− spectrum was ∝k−3

⊥ as suggested above, then — irre-
spective of the dominant scales of z̃+ — the correlation
scale of z̃− would become the largest scale at which the
arguments leading to Eqs. (18) break down (e.g., where
χexp < 1, or where the turbulence becomes weak). In
addition, we will show below that the co-moving scales
of z̃+ evolve in time as a result of another nonlinear con-
servation law (that for the “wave-action anastrophy”).
Herein lies the problem that complicates the compari-
son of the phenomenology to the numerical experiments:
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it is not clear what constrains the λ̃+ and λ̃− scales in
Eqs. (18), but their time evolution is crucial for deter-
mining many key aspects of the turbulent evolution. In
addition, it is not clear how the evolution of λ̃+, which is
the characteristic scale of z̃+ that controls the nonlinear
evolution of z̃−, relates to that of the correlation scale
L̃+ of z̃+. This allows us to consider the evolution of L̃+

separately from the decay phenomenology, unlike in stan-
dard decaying turbulence theory (§ IVD), but the cause

of this apparent discrepancy between λ̃+ and L̃+ remains
a poorly understood aspect of the phenomenology.

1. Numerical results

Consider first the left-hand panel of Fig. 1, focusing
on the decay (growth) of Ẽ+ (Ẽ−) for the χA0 = 96
(χexp0 = 960) simulation (solid lines), which undergoes
a long period of power-law evolution before reaching the
balanced regime. We see that Ẽ− ∝ a2, which is signifi-
cantly faster than the simplest prediction from Eq. (19)

with λ̃+σθ ∼ const. (yielding Ẽ− ∝ a1). While this is
perhaps not surprising, since, as seen in Fig. 2, the fluc-
tuations’ scales are increasing rapidly with time (thus

presumably increasing λ̃+), we have not identified a clear
candidate for providing the additional factor of a1/2 in
Eq. (19).1 The Ẽ+ decay, in contrast, matches the sim-

plest prediction of Eq. (20), with σθλ̃+/λ̃− ≈ 1 and

Ẽ+ ∝ a−1. This feature seems robust across different
initial conditions with sufficiently high χexp0 and sug-
gests physically that the dominant scale of z̃− that ad-
vects z̃+ to cause dissipation (λ̃−) is the same as that

which governs the evolution of z̃− (λ̃+). The reason for
such a correspondence is not immediately obvious but
may be related to the fact that the scales that control
the growth of z̃− are also coherent with z̃+ (being driven
by reflection), and thus most effective at advecting and
dissipating z̃+. Another, non-exclusive possibility is that
the z̃− that is most effective at advecting z̃+ has a ∼k−3

⊥
spectrum (as motivated above), which would yield a non-

linear turnover time (τ+ ∼ a3/2λ̃−/z̃
−) that is indepen-

dent of scale. Perhaps also of note is that a self-similar
power-law decay is possible in Eq. (20) only if σθλ̃+/λ̃−
is constant.

The lower-amplitude simulations, with χA0 = 0.75
(χexp0 = 7.5; dash-dotted lines) and χA0 = 0.075

1 Intriguingly, the correlation length of the residual energy, which
is the forcing scale of z̃− and could perhaps be heuristically
identified with λ̃+σθ, grows as approximately ∝a1/2, provid-
ing a good match to the observed growth of the amplitude of
z̃− from Eq. (19) in some simulations. However, this correspon-
dence seems to be sensitive to different initial conditions (not
shown) and, in any case, we do not have any understanding of
why the residual-energy scale should growth should be ∝a1/2, so
we will not emphasize this point further.

(χexp0 = 0.75; colored dotted lines) behave rather dif-
ferently. The χA0 = 0.75 shows a small amount of de-
cay in Ẽ+, while the χA0 = 0.075 case shows almost
none, and Ẽ− grows much more rapidly and is not a
power law in either simulations. We will show in §V that
this behavior is effectively just the linear growth of long-
wavelength z̃− modes, which are kz = 0 modes seeded
from the initial conditions in the simulation. The linear
growth of such modes is significantly faster than the non-
linear prediction (19), so the system reaches the balanced
regime at smaller a (equivalently, the nonlinear predic-
tion is z̃− ∼ z̃+/χexp and χexp is not large initially). The

lack of Ẽ+ decay is a consequence of the turbulence being
weak, or, in the case of the χA0 = 0.75 simulation, rapidly
becoming so, because χA ∼ (τ−)

−1/(k∥vA) ∝ a−1/2 for

fixed z̃+ and k∥. We have observed generically that
weak turbulence in the EBM exhibits almost no non-
linear decay, behaving effectively as a collection of lin-
ear modes. However, we caution that key aspects of the
expanding-box approximation are not valid for modes in
the weak regime, and its predictions for how z̃− is forced
via randomly-phased z̃+ are likely incorrect.2 Further
work is needed to understand these issues, but weak-
turbulence EBM results should be treated with caution.

B. Turbulent spectra

The energy spectra Ẽ±(k⊥) for the χA0 = 96 (χexp0 =
960) simulation over this imbalanced phase are shown in
Fig. 3. The two top panels show the time evolution of
Ẽ+ and Ẽ−, respectively, demonstrating their very dif-
ferent evolution. The bottom panel shows the simula-
tion at a = 5.2 when it has been refined to a resolu-
tion n2

⊥ × nz = 81922 × 256 in order to attempt to cap-
ture the transition to standard imbalanced turbulence at
small scales. The obvious feature of Ẽ+(k⊥) is its rapid
migration towards large scales, which will be discussed
in detail below in § IVD. As this occurs, Ẽ+ develops
a wide Ẽ+ ∝ k−1

⊥ range, which eventually transitions
into a steeper slope at small scales (see lower panel at
a ≈ 5.2). While the simulation does not have sufficient
resolution to easily diagnose the slope of this smaller-

scale turbulence, it is consistent with Ẽ+ ∝ k
−3/2
⊥ , as

would be expected at small scales once nonlinear shear-
ing rates inevitably overwhelm reflection-related physics

2 In particular, in the weak regime, a z̃− fluctuation sourced via
reflection can, for some parameters, propagate backwards across
a distance larger than the box length. In doing so, it will re-
encounter the same z̃+ fluctuations that sourced it, thereby in-
troducing artificial correlations. For linear Fourier modes, which
are periodic by fiat, this correlation causes a reflected z̃− wave to
oscillate as a standing wave without growing in time. In contrast,
Ref. [36] argue that z̃− could build in time via a random walk
because such correlations get scrambled, leading to a prediction
that is similar to the strong phenomenology Eq. (19).



11

FIG. 3. Wave-action energy spectra Ẽ±(k⊥) during the imbalanced phase of the simulation. The top-left and top-right panels

show Ẽ+(k⊥) and Ẽ−(k⊥), respectively (note the differing vertical scales), with the different colors showing different time/radii,
as indicated by the color bar. In each panel, the inset shows the best-fit power-law spectral slope, which is fit below the
measured correlation scale at each a. The bottom panel shows both Ẽ+ (red) and Ẽ− (blue) at a ≈ 5 when the simulation
is refined to the higher resolution of n2

⊥ × nz = 81922 × 256. Dashed back lines show various power-law slopes, highlighting
a steepening of Ẽ+(k⊥) at small scales (although there is not sufficient range to say whether it steepens to Ẽ+ ∝ k−3/2 as

observed in the solar wind). The inset shows the two-dimensional spectrum of the dominant waves Ẽ+(k⊥, kz), illustrating how
the fluctuations have decorrelated in the parallel direction (as indicated by the approximately vertical contours at larger k⊥).

(see below). The evolution of Ẽ−(k⊥) is quite different,
rapidly moving to large scales at very early times. This
feature is consistent with the discussion above, where
we argued that the dominant scale of z̃− has no rea-
son to match that of z̃+, because large amplitude z̃+

eddies cause both stronger growth and stronger damp-

ing. The spectral slope rapidly reaches Ẽ− ∝ k
−3/2
⊥ over

wide range of scales that overlaps with the range where
Ẽ+ ∝ k−1

⊥ .

These basic features can be plausibly understood
within the framework discussed above if we also consider
that z̃− could consist of two qualitatively separate “clas-
sical” and “anomalous” components, as introduced in
previous works [4, 26, 36, 68]. The anomalous component
maintains coherence with z̃+, allowing it to shear coher-
ently over long times and thus dominating z̃+’s turbulent

decay. The classical part, in contrast, would be that cas-
caded from larger scales in z̃−, dominating the measured
spectrum but only weakly affecting the decay of z̃+ be-
cause the nonlinear interactions are weak and accumulate
as a random walk. Indeed, the claim above — that z̃−

should form a Ẽ− ∝ k−3
⊥ spectrum due to the balance be-

tween reflections and nonlinearity — is not sustainable
towards small scales. In particular, in order to form a
k−3
⊥ spectrum, the energy injection at each scale from re-

flection must be larger than the flux arriving to this scale
from larger scales due to nonlinear transfer. Based on the
phenomenology of § IVA and using Ẽ+ ∝ k−1

⊥ , one finds

that the injected flux scales as ε− ∝ k⊥z̃
+(z̃−)2 ∝ k−1

⊥ ,
implying that it declines towards smaller scales and will
be overwhelmed by the nonlinear transfer from larger
scales [68]. This idea can thus be used to motivate there
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FIG. 4. Space-time Fourier transform Eq. (24) of z̃+ (left panels) and z̃− (right panels). Each column is normalized to
its maximum value to better illustrate the structure. The top panels show the χexp0 = 960 reflection-driven turbulence
simulation at a ≈ 5 (as in Fig. 2); the bottom panels show the same simulation around the same time, but restarted with
the reflection and expansion terms artificially removed (viz., as a normal decaying RMHD turbulence starting with initial
conditions generated from the reflection-driven turbulence). While z̃− fluctuations remain anomalously coherent with z̃+ in
the reflection-driven simulation (top panels), the homogenous decaying turbulence does not exhibit this feature (the dominance
of outwards-propagating z̃− fluctuations at kz ≳ 20 in the bottom-right panel is likely due to field-line wandering and the
diagnostic should not be trusted in this range).

being a “hidden” Ẽ− ∝ k−3
⊥ spectrum in Fig. 3 that is the

dominant advector of the z̃+ (interestingly, the measured

spectrum of the 2-D modes does follow Ẽ− ∝ k−3
⊥ ; not

shown). As noted by Ref. [4] and extended to more real-
istic anisotropic turbulence by Ref. [26], because the z̃+

cascade rate is ε+ ∝ k⊥z̃
−(z̃+)2, if this is independent of

k⊥ (a constant-flux z̃+ cascade), the z̃+ spectrum would

be Ẽ+ ∝ k−1
⊥ as observed here, in previous reflection-

turbulence simulations [26, 36, 41, 68], and in the solar
wind.

C. Anomalous coherence

The “coherence assumption” was used extensively in
the discussion above in order to justify using the nonlin-
ear time τ+ ∼ a3/2λ̃−/z̃

− to estimate the turbulent decay
rate of the z̃+ fluctuations, even though the z̃− fluctua-
tions are very low amplitude and thus might be expected
to cascade z̃+ weakly. In Fig. 4, we diagnose this as-
sumption numerically using space-time Fourier spectrum
[69, 70], defined as

Ẽ±(kz, ω) =
1

2

〈
|ˆ̃z

±
(kz, ω)|2

〉
⊥
, (24)

where ˆ̃z
±
(kz, ω) are the Fourier transforms in time

and space of the Elsässer field. The average, ⟨·⟩⊥, is
taken over all perpendicular wavenumbers, meaning that
Ẽ±(kz, ω) will be dominated by contributions from the
perpendicular scales that dominate the energy spectrum
at each kz. In the absence of reflection, linear z̃± per-
turbations satisfy the dispersion relation ω± = ±kzvA,
so would each show up as a single line in Ẽ±(kz, ω) at
ω = ±kzvA (we take kz > 0). In the nonlinear simula-

tion, the ω location of the peak of Ẽ±(kz, ω) versus kz
thus indicates the effective velocity of z̃± perturbations,
while its width provides a measure of the the level of
nonlinear broadening due to the turbulence. Note that,
because the Fourier transform is taken in kz, rather than
k∥, care is required to ensure that the diagnostic is not
affected by field-line wandering. We will see that this
likely pollutes the results for kz ≳ 25 in our simulations.

In the top panels of Fig. 4, we show Ẽ+(kz, ω) (left) and

Ẽ−(kz, ω) (right) in the χA0 = 96 reflection-driven simu-
lation. It is normalized to its maximal value at each kz
and computed over several Alfvén crossing times around
a ≈ 5. As expected, the z̃+ fluctuations concentrate in
the vicinity of the Alfvén-wave prediction3 ω ≈ kzvA,

3 Alfvén-wave frequencies are reduced slightly by expansion (see
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with modest nonlinear broadening. But, the z̃− fluctua-
tions (top-right panel) are seen to propagate oppositely
to linear Alfvén waves, populating the same (upper) re-
gion as the z̃+. This provides direct empirical evidence
that they propagate together with z̃+, leading to anoma-
lous coherence. In the frame of the z̃+ fluctuations, such
z̃− are stationary, and can thus coherently shear the z̃+

eddy over the timescale τ−.

To assess the role of reflection in supporting this phe-
nomenon, in the bottom panels we illustrate the same
plots, but for standard homogenous decaying turbulence.
Specifically, we restart the reflection-driven simulation
from the same time pictured in the top panels, but with
the reflection and expansion terms removed, then allow
this turbulence to decay for several Alfvén time to mea-
sure Ẽ±(kz, ω) (over this timeframe, z̃− decays notice-
ably, but z̃+ does not, meaning the effect of z̃+ on z̃−

should remain similar). While Ẽ+(kz, ω) (bottom-left
panel) remains similar, we see a much wider spread in

Ẽ−(kz, ω) (bottom-right panel), which extends down to
ω ≈ −kzvA. These general features are as expected be-
cause the z̃+ modes shear the z̃− modes with a nonlinear
time comparable to their linear time, thus forming a non-
linear frequency spread of width ∼kzvA. The change to
ω > 0 dominating around kz ≳ 25 is artificial, occurring
because our Fourier transform in kz does not correctly
follow the field lines, causing the measurement to be dom-
inated by the advection of high-k⊥ structures (presum-
ably this same effect occurs in the left panels also, but is
hidden because the fluctuations already sit at ω > 0).

The simplest way to understand these results is as a di-
rect numerical demonstration of the importance of reflec-
tion in maintaining anomalous coherence in imbalanced
turbulence [36]. The top panels of Figure 4 verify that the
z̃− effectively remain stationary in the frame of z̃+ fluc-
tuations; they thus do not undergo Alfvén-wave collisions
and can shear z̃+ coherently to enable a strong cascade.
While similar ideas have appeared in a number of pre-
vious works for both homogenous and reflection-driven
turbulence [4, 26, 36, 62, 66], our results here provide a
particularly clear demonstration of the effect and, via the
comparison of the top- and bottom-right panels in Fig. 4,
establish the importance of reflection in maintaining the
coherence. Interestingly, Ref. [70] have reported simi-
lar, though less extreme, behavior of z̃− in homogenous
imbalanced MHD turbulence simulations with external
forcing. While this does not directly disagree with our
results here (since the bottom panels in Fig. 4 are decay-
ing), the topic clearly deserves more study to understand
the impact of forcing (via reflection or otherwise) on co-
herence.

§VA), but the effect is negligible for the range plotted here.

FIG. 5. Parametric representation of the instantaneous scal-
ing exponents of 1/z̃+rms and the energy correlation length L̃+

during the radial transport. The colors indicate the normal-
ized radial distance a (in logarithmic space). The dashed line
Y = X + 1/2 represents the theoretical expectation based
on anomalous growth of anastrophy (Eq. (28)). The black
star corresponds to the expected position for an anastrophy-
conserving decay characterized by Ẽ ∝ a−1, as described
in § IVA. The black dot corresponds to the asymptotic ex-
pectation based on the linear solution (§ VA) for the long-
wavelength expansion-dominated modes with ∆ < 1/2, which
dominate the simulation at late times.

D. Wave-action anastrophy growth and the split
cascade

In this section we argue that the turbulent growth of
“wave-action anastrophy” (wave-action magnetic vector

potential squared) causes L̃+, the co-moving correlation
scale of z̃+, to rush to large scales as z̃+ decays. This ef-
fect places a strong constraint on the nonlinear dynamics
with interesting implications for the solar wind. It can be
equivalently viewed in the expanding (physical) frame as
the turbulent suppression of anastrophy decay compared
to what occurs for linear waves.

1. Wave-action anastrophy

Our starting point is to note that, because ∇̃⊥ ·z̃± = 0,
∇̃⊥ · b̃⊥ = 0, and ∇̃⊥ · ũ⊥ = 0, one can define the wave-
action potentials:

ẑ×∇̃⊥ζ̃
± = z̃±, ẑ×∇̃⊥Ãz = b̃⊥, ẑ×∇̃⊥Φ̃ = ũ⊥. (25)

Here, ∇̃⊥ is the co-moving-frame gradient, so these po-
tentials differ from those naturally defined in the physical
(expanding) frame, but will be more convenient here.4

4 Accounting for the various factors of a in gradients and the
Alfvénic normalization of b̃⊥, one finds that Ãz is related to
the physical vector potential ∇̂ ×A = B by Ãz = a1/2Az .
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Equation (6) can then equivalently be written in terms

of ζ̃±, or Φ̃ and Ãz, which evolves as

ȧ
∂Ãz

∂ ln a
+

1

a1/2
{Φ̃, Ãz} = vA0

∂Φ̃

∂z
+

ȧ

2
Ãz, (26)

where the Poisson bracket is defined as {Φ̃, Ãz} = ẑ ·
∇̃⊥Φ̃×∇̃⊥Ãz [50]. Multiplying (26) by Ãz and integrat-
ing, we form the equation for wave-action anastrophy,
Ã ≡ ⟨Ã2

z⟩/2:

ȧ

(
∂Ã
∂ ln a

− Ã

)
= vA0

〈
Ãz

∂Φ̃

∂z

〉
=

vA0

2

〈
ζ̃+

∂ζ̃−

∂z

〉
.

(27)
The nonlinear term has disappeared because anastrophy
is an ideal invariant of the 2D RMHD system, while the
expansion causes Ã to grow (the −Ã on the left-hand-

side of (27)) and the 3-D term ⟨ζ̃+∂z ζ̃−⟩ = −⟨ζ̃−∂z ζ̃+⟩
can in principle either destroy or create it, depending on
the correlation between the two Elsässer fields. Omitted
in Eq. (27) is an additional hyper-dissipation term on its

right-hand side, which can dissipate small-scale Ã and
thus provide an important contribution if there exists a
turbulent flux of Ã to small scales.

Equation (27) shows that if ⟨ζ̃+∂z ζ̃−⟩ is small in
the appropriate sense, wave-action anastrophy will grow
rapidly (up to Ã ∝ a), purely due to linear expansion
effects.5 As a relevant example, if the fluctuations sat-
isfy |σθ| = 1 (ζ̃+ ∝ ζ̃−), lying on the edge of the circle

plot in the right panel of Fig. 1, then ⟨ζ̃+∂z ζ̃−⟩ = 0,

driving growth of Ã. We will now argue that in strong
reflection-driven turbulence, the wave-action anastrophy
grows with a, even in 3-D. The argument relies on con-
sidering what occurs for propagating linear Alfvén waves,
which, so long as ∆ = kzvA0/ȧ > 1/2 (see §VA), propa-
gate with constant amplitude on average, and thus con-
stant Ã. This implies that ⟨ζ̃+∂z ζ̃−⟩ in Eq. (27) must
exactly balance the expansion-induced growth. Indeed,
as shown in App. A, as an outwards (ζ̃+) fluctuation

propagates, the reflected ζ̃− component trails it by π/2
in phase and has exactly the required amplitude to ensure
that vA0⟨ζ̃+∂z ζ̃−⟩ = −2ȧÃ. Because the phase offset of

π/2 causes ⟨ζ̃+∂z ζ̃−⟩ to be as negative as possible, this

implies that so long as |ζ̃−|/|ζ̃+| remains similar to (or
less than) the linear solution, any change to the phase off-

set between ζ̃− and ζ̃+ will increase ⟨ζ̃+∂z ζ̃−⟩ (decrease
|⟨ζ̃+∂z ζ̃−⟩|), thus causing Ã to grow with a.
For application in strong reflection-driven turbulence,

it is therefore helpful to compare z̃− in the phenomenol-
ogy of § IVA to what the the linearly reflected z̃− would

5 Note that in physical variables, this scaling Ã ∝ a corresponds
to Az itself being constant with a, so that the anastrophy
A =

∫
dV A2

z scales as A ∝ a2 (the physical volume of inte-
gration dV increases ∝a2); this is a consequence of the fact that
at very low frequencies, B⊥ ∝ a−1 due to flux conservation,
while perpendicular lengthscales increase ∝a.

be for a given z̃+, knowing that, if its phase offset is
perfect, the latter destroys Ã at just the correct rate
to maintain constant Ã. The nonlinear phenomenology
yields z̃− ∼ z̃+/χexp (§ IVA), while the linearly reflected
component is z̃− ∼ z̃+/∆ (see App. A). Therefore, the
ratio of the two is the critical balance parameter χA

— a sensible expectation given that χA is the ratio of
the two effects (Alfvénic propagation and nonlinearity)
that can compete with expansion to halt the growth of
z̃−. This implies that in strong (χA ∼ 1) reflection-
driven turbulence, the amplitude of the growing z̃− is
no larger than the amplitude needed to maintain con-
stant Ã. The consequence is that any modification to
the linear (π/2) phase offset between z̃− and z̃+ will de-

crease vA0|⟨ζ̃+∂z ζ̃−⟩| below 2ȧÃ, thereby causing Ã to
grow. While chaotic nonlinear interactions will generi-
cally act to scramble the phases of ζ̃±, we argue that
reflection turbulence causes a more pronounced effect:
the anomalous coherence, which leads to the high ob-
served correlation between −z̃− and z̃+ (negative σθ),

also precludes a large correlation between ζ̃+ and ∂z ζ̃
−.6

In other words, the phases are partially scrambled by the
turbulence, but with a tendency for correlation between
ζ̃+ and −ζ̃−, rather than ζ̃+ and ∂z ζ̃

−. The surprising
consequence is that, while the decay rate of wave-action
energy increases (up to Ẽ ∝ a−1) as the turbulence be-
comes stronger (see Fig. 1), the opposite is true of the
wave-action anastrophy: it is approximately constant in
weak turbulence (where ⟨ζ̃+∂z ζ̃−⟩ remains similar to its
linear value), but grows in strong turbulence.

2. The growth of L̃+

From here, the arguments are standard [67]. The wave-
action energy, which is almost a true inviscid invariant
during the imbalanced phase when |Ẽr| ≪ Ẽ, decays
nonlinearly due to the turbulent flux between the co-
moving correlation scale L̃+ and the dissipation scales.

But, because the small-scale dissipation of Ã is propor-
tional to the magnetic energy, for small (hyper-)viscosity,

if the nonlinear dissipation of Ẽ remains finite, the non-
linear dissipation of Ã must be smaller [71, 72]. Com-

bined with the argument above that |vA0⟨ζ̃+∂z ζ̃−⟩| ≲
2ȧÃ, we thus expect Ã to grow. Then, because Ẽ ∼
Ã/L̃2

+ for imbalanced fluctuations, if Ẽ decays while Ã
grows (or even remains constant), this leads to remark-
able phenomenon: the turbulent decay must progress

6 For individual Fourier modes, ζ̃±k , this follows from the

fact that ⟨ζ̃+∂z ζ̃−⟩ = −2kzIm[ζ̃+k (ζ̃−k )∗], while σθ =

−2Re[ζ̃+k (ζ̃−k )∗]/(|ζ̃+k ||ζ̃−k |). Since Im(z)2+Re(z)2 = |z|2, a large

σθ (proportionally large Re[ζ̃+k (ζ̃−k )⋆]) precludes the possibility

of ⟨ζ̃+∂z ζ̃−⟩ being large compared to kz |ζ̃+k ||ζ̃−k |. For a system
with a range of modes, a similar argument can be made via the
Cauchy-Schwarz inequality.
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with L̃+ increasing rapidly in time. Specifically, taking

Ã ∝ a (assuming |vA0⟨ζ̃+∂z ζ̃−⟩| ≪ 2ȧÃ and minimal
nonlinear dissipation), we find

a−1Ẽ+L̃2
+ ∼ const. =⇒ L̃+ ∝ a, (28)

where we used Ẽ+ ∝ a−1 from Eq. (20). This prediction
applies to the co-moving frame, implying yet faster in-
crease in scales in the physical frame (L+ ∝ a2). Note
that this law is more extreme than the standard argu-
ment for growing correlation scales in decaying 2-D MHD
turbulence, which invokes only the lack of nonlinear de-
cay of anastrophy [73, 74]. It is also worth clarifying that
there is no “trick” involved with the wave-action variables
here: if we were instead to work in physical variables in
the co-moving frame, (co-moving) anastrophy would re-
main constant, but the energy would linearly decay ∝a−1

(and thus turbulently decay ∝a−2) because z± naturally
decays with a.

The prediction Eq. (28) is tested in Fig. 5. We compute
the parametric representation,

X(a) = −∂ ln z̃+rms(a)

∂ ln a
, Y (a) =

∂ ln L̃+(a)

∂ ln a
, (29)

where z̃+rms =
√
2Ẽ+ and L̃+ is computed as

L̃+ ≡
∫

dk⊥Ẽ+(k⊥)/k⊥. (30)

X(a) and Y (a) are the instantaneous scaling exponents of

1/z̃+rms and L̃+, implying that if wave-action anastrophy,

Ã ∼ Ẽ+L̃2
+, grows as Ã ∝ a during the decay, then

Y (a) = X(a) +
1

2
. (31)

This relation is independent of the decay rate of Ẽ and
thus the decay phenomenology. We see in Fig. 5 that
all through the imbalanced phase (a ≲ 50), X and Y sit

almost on the line (31), implying L̃+ grows almost as pre-
dicted by wave-action anastrophy growth (slightly more
slowly). In the later dynamics, which will be described
in more detail below, the fluctuation decay/growth rate
(X) changes significantly, but wave-action anastrophy re-
mains ∝a as indicated by its evolution along the dotted
line.

3. The split cascade

Physically, the fast increase in L̃+ implies the energy
decays through a split cascade, whereby it is forced to
flow to both small and large scales simultaneously. We
diagnose this surprising phenomenon directly in Fig. 6
by computing the Elsässer perpendicular wave-action-
energy fluxes as a function of perpendicular wavenumber
k⊥ [75]:

Π±(k⊥) = −a−3/2 2π

L⊥

∫
d3r

V

[
z̃±]<

k⊥
·(z̃∓ ·∇̃⊥z̃

±), (32)

where the low-pass filter is defined by[
z̃±]<

k⊥
=
∑
k′
z

∑
|k′

⊥|≤k⊥

eik
′·rz̃±

k . (33)

The split cascade of the energetically dominant field z̃+

is revealed by the break between the blue and red bands
that extends diagonally upwards. It is located near the
measured 1/L̃+ at earlier times, decreasing as expected
due to the conservation of anastrophy (approximately

∝1/a). On the right of the break, Ẽ+ cascades towards
small scales where reflection becomes subdominant and
the hyper-viscosity allows its dissipation; on the left, Ẽ+

cascades towards large scales, allowing L̃+ to increase in
time. The break scale deviates modestly from the ∝a−1

expectation, increasing more rapidly at early times and
then slowing somewhat around a ≈ 5 for unknown rea-
sons, but its behavior is broadly consistent with the evo-
lution of L̃+ (Fig. 5). The sub-dominant field z̃− un-
dergoes a direct cascade during its entire evolution, aside
from at the largest scales at late times, where the dynam-
ics start becoming effectively two-dimensional and bal-
anced, differing significantly from the imbalanced phase
(see below). This leads to the interesting phenomenon
whereby z̃− and z̃+ cascade in opposite directions across
a modest range of intermediate scales (those above the
break scale in Π+) during the imbalanced turbulent de-
cay. Similar dual, counter-directional Elsässer cascades
have been reported previously in flux tube simulations
of coronal holes [27], and observed in high cross-helicity
solar-wind streams [76, 77].

V. BALANCED, MAGNETICALLY
DOMINATED PHASE

With z̃+ decaying while z̃− grows, it is clear that the
imbalanced phase must inevitably end as the fluctua-
tions approach the balanced regime with z̃− ∼ z̃+. In-
deed, recall that the phenomenology of § IVA predicted
z̃− ∼ z̃+/χexp, where χexp is the ratio of expansion to
nonlinear times (Eq. (23)), which is necessarily a decreas-
ing function of time. Thus χexp ∼ 1 marks the end of
the imbalanced phase. In Fig. 1, we saw that the wave-
action energy starts growing in time, with Ẽ ∝ a, mag-
netically dominated fluctuations (σr < 0), and very little
turbulent dissipation into heat. It is the purpose of this
section to understand the important properties of this
balanced, magnetically dominated phase, making predic-
tions for in-situ observations at large distances from the
sun.

A. Linear EBM dynamics

We will show below that by organizing itself into struc-
tures that minimize the nonlinear stresses, the system
becomes effectively linear in its late stages. We thus de-
scribe basic features of the linear solution here, focusing
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FIG. 6. Two-dimensional k⊥-a evolution of the Elsässer fluxes Π+(k⊥) (left panel) and Π−(k⊥) (right panel; see Eq. (32)). At
each a the Π±(k⊥) are normalized by their maximum over k⊥ in order to better show their structure. We see clear evidence of
a split cascade in z̃+, with a break between the forward and inverse cascades that migrates to larger scales with time. Although
the cause of the modest deviations from the ∝a−1 scaling remains unclear, the general behavior is consistent with the discussion
in the text and the evolution of the correlation length in Fig. 5.

FIG. 7. Solutions of the linearised equations Eq. (34), start-
ing from the initial condition z̃−(0) = 0 and z̃+(0) =

√
2 with

different values of ∆ as labelled. Solid lines show |z̃+(a)|;
dotted lines show |z̃−(a)|. ∆ > 1/2 modes (red, yellow, and
green curves), which are dominated by Alfvénic forces, ex-
hibit wave-like behavior with no long-term growth or decay
(Im(ω) = 0); z̃+ propagates Alfvénically with an oscillating
phase and approximately constant amplitude, while the am-
plitude of z̃− alternates up and down over the wave period
as z̃− moves in and out of phase with the reflection forcing
from z̃+ (its maximum amplitude scales ∝∆−1; see Eq. (36)
and App. A). In contrast, long-wavelength ∆ < 1/2 modes
with Re(ω) = 0 (blue and black curves), do not oscillate like
waves at all because the reflection overwhelms the Alfvénic
restoring force (see Eq. (37) [21]). The amplitude of the mag-

netically dominated mode grows as |z̃±(a)| ∝ a|ω±|, with the
growth rate |ω±| = 1

2

√
1− 4∆2 depending only weakly on ∆

(cf. blue and black curves).

on the difference between short-wavelength propagating
(Alfvénic) waves and expansion-dominated solutions at
long wavelength, which grow continuously with a. These

linear solutions are illustrated in Fig. 7, starting from
pure z̃+ fluctuations in the initial conditions. Their char-
acteristics, including the growth of expansion-dominated
modes, have been studied using various methods in global
geometries in a number of previous works [21, 78, 79];
they are not an artefact of the expanding box model.
The full linear solution is easily obtained by ig-

noring the nonlinear terms in Eq. (7) and assuming
divergence-free plane-wave solutions of the form z̃± =
z̃±(a)eik⊥y+ikzzx̂. This gives

∂z̃±

∂ ln a
+

(
i∆ 1/2
1/2 −i∆

)(
z̃+

z̃−

)
= 0, (34)

where ∆ = kzvA/(ȧ/a) = kzvA0/ȧ (using the time vari-
able ln a eliminates explicit time dependence from the
linear system), allowing one to insert the ansatz,

z̃±(ln a) = z̃±w exp(iω ln a), (35)

where z̃±w is the complex amplitude of z̃±(a). The general
solution to Eq. (34) can then be formed via the eigen-
modes,

ξ± =
1

2
z̃±w ± i

(
∆∓ ω±) z̃∓w , (36)

which evolve as ξ±(a) = ξ±0 exp(iω± ln a) from initial
conditions ξ±0 , where the eigenfrequencies ω± are

ω± = ±
√

∆2 − 1/4. (37)

We see that ∆ = 1/2 marks the boundary between
oscillating Alfvénic modes and growing (or decaying)
expansion-dominated modes: for ∆ > 1/2, ω± is real and
z̃± oscillates with frequency ω±, albeit with a minority-
reflected z̃∓ component that inevitably accompanies any
z̃± fluctuation; for ∆ < 1/2, ω± is imaginary and modes

grow exponentially, z̃± ∝ e|ω
±| ln a = a|ω

±| = a
√
1−4∆2/2,
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because the expansion overwhelms the Alfvénic restoring
force. The growing expansion-dominated mode, with ω =
i
√
1/4−∆2, is magnetically dominated with z̃− ≈ −z̃+

and |b̃⊥| ≫ |ũ⊥|, while the decaying mode (Im(ω) < 0)
is ũ⊥ dominated. Physically, the ∼a1/2 growth of z̃±

corresponds to |B⊥| ∝ a−1 (|B⊥|/|B| ∝ a) so that
b⊥ = B⊥/

√
4πρ is constant [37, 80]. Clearly, if there

exists any power in such expansion-dominated modes at
early times, they will inevitably come to dominate the
late-time evolution, overtaking the Alfvénic (∆ > 1/2)
modes.

In our simulations with ∆box = 10 (Eq. (11)), only the
kz = 0 periodic mode lies in this expansion-dominated
regime. But, the properties of expansion-dominated
modes are rather insensitive to kz for ∆ < 1/2: the modes
have no real frequency (oscillating) part and growth
rates that exhibit only a small correction compared to
the ∆ = 0 mode (Im(ω+) ≈ 1/2 − ∆2 for small ∆).
Therefore, we argue that their dynamics should be ad-
equately captured by the simulation, even though true
kz = 0 modes are obviously not possible in a realistic non-
periodic system. In reality, if we assume that the longest-
wavelength modes possible are those of the system scale,
with kz ∼ 1/R, then the minimum ∆ available to the sys-
tem is ∆min ∼ (vA/R)/(U/R) ∼ vA/U < 1. Thus, in the
super-Alfvénic (vA < U) wind it is always consistent to
assume that the expansion-dominated modes exist, and
indeed, the range of such modes available to the system
will be an increasing function of radius. This feature,
whereby ∆min decreases with radius, is clearly not possi-
ble to capture in the EBM with a fixed Lz (it is captured
by global linear solutions [21, 79]), so the impact of this
physics should be tested in future work using flux-tube
simulations.

B. Transition into the magnetically-dominated
phase

During the imbalanced phase in our simulations, the
turbulence appears to remain strong with χA ∼ 1, rapidly
adjusting its parallel correlation length ℓ∥ towards larger
scales as the turbulence decays (after its initial transient
adjustment from the initial conditions, which occurs by
a ≈ 1.2). This phase ends, and the decay deviates from

the Ẽ ∝ a−1 phenomenology of §IVA, once it decays suf-
ficiently so that the box-wavelength modes (kz = 2π/Lz)
become weak (χA < 1). This occurs around a ≈ 25
for the solid lines in Fig. 1, which agrees well with the
value expected from solving z+/λ̃+ ≃ vA2π/Lz with

z̃+ ∝ a−1/2 and λ̃+ ∝ a−1/2. Following this, the
expansion-dominated modes inevitably take over, driv-
ing the system towards the |b̃⊥| ≫ |ũ⊥| linear solution

that grows with |b̃⊥| ∝ a1/2.
More generally, without the limitations of our periodic

box, this transition should be understood by noting that
if the turbulence remains strong with χA ∼ 1 throughout
its decaying imbalanced phase (as appears to be the case

until it becomes artificially constrained by the box), the
transition to the balanced regime, at χexp ∼ 1, will occur
when ∆ = χexp/χA ∼ 1, viz., at the same time that the
dominant modes in the system become expansion domi-
nated. This pleasing consistency of the phenomenology
argues that the system cannot reach the balanced phase
while still dominated by Alfvénic physics and suggests
that the large scales in the balanced phase will not be
critically balanced in the usual sense (because their linear
physics is dominated by expansion not Alfvénic propaga-
tion). This property should hold so long as the turbu-
lence remains strong during the imbalanced-decay phase
and transitions into the balanced phase at χexp ∼ 1 (i.e.,

independently of the evolution of λ̃+ or other uncertain-
ties in § IVA)
Following this transition, any further turbulent decay

will tend to increase the nonlinear time, thus driving the
system inevitably towards the linear regime where expan-
sion dominates both Alfvénic and nonlinear effects. This
can be seen by noting that unless λ̃+ decreases, then even
the fastest-possible linear growth, z̃+ ∼ z̃− ∝ a1/2, leads
to χexp ∼ a−1/2(z̃+/λ̃+)/ȧ remaining constant (the dom-
inance of expansion over Alfvénic propagation is guaran-
teed because ∆ ≲ 1). However, we see from the per-
pendicular structure shown in Fig. 2 that the system
approaches this expansion-dominated state in an inter-
esting and nontrivial way: rather than simply decaying
to low amplitudes to reduce the nonlinear time, it or-
ganizes itself into isolated, coherent structures that ap-
proach nonlinear solutions in which the magnetic tension
balances the pressure. This self organization thus defeats
prematurely the nonlinear couplings and turbulent dissi-
pation, precipitating the system into magnetically domi-
nated “Alfvén vortices” that behave almost linearly.
Because the system becomes expansion dominated

with little turbulent dissipation, its growth must also
satisfy the prediction of Eq. (31) for the growth of wave-

action ansatrophy Ã ∝ a. Thus, during the transition
as it moves into the balanced phase, the system evolves
downwards along the Y = X+1/2 line in Fig. 5, tending
towards the point X = −1/2, Y = 0 that characterizes
purely linear evolution.

C. Emergence of Alfvén vortices

At this point, the story is mostly finished as far as the
turbulent heating and dissipation is concerned: as the
system becomes balanced, it also starts shutting off its
nonlinear dissipation, creating long-parallel-wavelength
perpendicular structures that grow with |b̃⊥| ∼ a1/2.
However, the quasi-circular structures that emerge (see
Fig. 2) are of significant interest, both for comparison to
in-situ observations, and because they are picturesque il-
lustrations of the “cellularization” of turbulence [81] — a
vivid example of self-organization [82]. They can be un-
derstood using a classical variational argument [83]. Mo-
tivated by the turbulent wave-action anastrophy growth,
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FIG. 8. Left: Snapshot of the magnetic field modulus in a plane perpendicular to B0 at a = 250. Middle: Close-up corresponding
to the marked region on the left, illustrating Alfvén vortices colliding and and merging through reconnection. The black circles
mark the regions over which azimuthal averages have been computed to fit the Alfvén-vortex solution (42) in figure 9. Right:
Same region as the middle panel, but showing the out-of-plane current. This reveals sets of intense current rings, a hallmark
of the ground-state Alfvén vortices.

we minimize the Alfvénic magnetic energy per unit vol-
ume, ⟨|b⊥|2⟩/2 = a−1Ẽb, subject to the constancy of the

anastrophy per unit volume, ⟨A2
z⟩/2 = a−1Ã (by this

choice of variables, we factor out the expansion-induced
dependence on a; both ⟨|b⊥|2⟩ and ⟨A2

z⟩ remain constant
under linear evolution for a ≫ 1). Such minimization
requires that during the relaxation process the kinetic
energy is dissipated completely, leaving a pure magnetic
state. It is thus aided significantly by expansion, which
damps u⊥ but not b⊥ (see Eqs. (2) and (3)) and preferen-
tially increases the energy content of the longest-parallel-
wavelength modes (thus creating quasi-2D dynamics at
a large radial distances).

These arguments lead us to the variational problem

a−1δ

∫
d3r

(
|∇̃⊥Ãz|2 − ΛÃ2

z

)
= 0, (38)

where δ denotes the functional derivative and Λ a La-
grangian multiplier. Identifying Λ with a characteristic
scale K⊥ via Λ = −K2

⊥, the Euler-Lagrange equation
becomes the Helmholtz equation,

∇̃2
⊥Ãz = −K2

⊥Ãz. (39)

Recalling that Ãz evolves as a passive scalar in 2-D (see
Eq. (26)), we now imagine some region, or “cell,” in the
domain that can change shape and mix in order to ap-
proach the minimum energy state, viz., the solution of
(39) with the minimum possible K⊥. The argument is
effectively that the Lagrange multiplier K⊥ should be
piecewise constant, enforcing the minimization principle
across patch-like “cells” where the turbulence becomes
suppressed. We assume the value of Ãz outside the cell in

question to be approximately constant (based on Fig. 2,
this may not be so unreasonable as it sounds), which fixes

some boundary condition Ãz = AB on its edge. The area
of the cell must remain constant because the ũ⊥ that ad-
vects Ãz is incompressible (similarly, the average of Ãz

across the cell is fixed) — we are therefore interested in
a solution of Eq. (39) that is as compact as possible for a
given K⊥, thereby providing the lowest energy (smallest
K⊥) for a given sized cell. This is afforded by a cylin-
drically symmetric cell, so we define (r, θ) as the polar

coordinates centered on the cell, yielding Ãz ∝ J0(K⊥r)
as the only θ-independent solution that does not diverge
as r → 0. Note that an arbitrary constant can be added
to the solution by changing the gauge of Ãz, but this must
be added directly into the original variational problem.
Collecting these constraints, we obtain the perfectly

circular magnetic-vortex solution{
Ãz(r) = A0J0(K⊥r), r < rc
Ãz(r) = AB , r ≥ rc,

(40)

where rc is the radius of the cell, at which A0J0(K⊥r) =
AB (as required to satisfy the boundary condition).
Note that the two constants A0 and K⊥ are determined
through the fixed area of the cell, the initial wave-action
anastrophy, and the boundary conditions (assuming Ãz

is continuous at the start of the relaxation this will not
provide a third constraint). This leaves no freedom to al-

low the first derivative of Ãz (i.e., the magnetic field) to

be continuous, leading to an inevitable b̃⊥ discontinuity
across the cell boundary and a strong ring of current sur-
rounding the cell. These features are clearly observed in
the simulation, as shown in Fig. 8, where we zoom in on
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FIG. 9. Top: Comparison between the absolute value of the
magnetic vector potential obtained from numerical simulation
at a = 250 (colored lines) and the analytical prediction (42)
(black dots). The red, blue and green lines have been obtained
from the Alfvén vortices labeled 1,2 and 3 after an azimuthal
average about their center (denoted |⟨Ãz⟩θ|). The inset rep-
resents the analytical prediction for the magnetic field, high-
lighting the presence of a discontinuity at the vortex bound-
ary. Bottom: 2D representation of the solution (42) for the
magnetic field modulus |b⊥| and absolute value of magnetic
current |jz| (the color scales are arbitrary).

various observed cells and highlight the large boundary
currents (right panel).

The solution (40) corresponds to a particular case of
so-called “Alfvén vortex” solutions [46, 47], in particu-
lar the vortex “monopole.” As well as resulting from
the variational argument, they arise as nonlinear solu-
tions of ideal incompressible MHD equations. Indeed,
the Helmholtz equation (39) can instead be obtained by
assuming zero flow u⊥ = 0 and kz ≪ k⊥, which gives,
from the momentum equation (6),

{Ãz, ∇̃2
⊥Ãz} = 0. (41)

Any functional relation ∇̃2
⊥Az = f(Az) satisfies (41),

which subsumes any solution of the Helmholtz equa-
tion (39) and thus Eq. (40). In this minimum energy,
constant-anastrophy solution, the contours of Az and
∇̃2

⊥Az are circularly symmetric with aligned gradients,
thus nullifying the Poisson bracket (41) [84]. This non-
linear solution involves the magnetic tension balancing
the perpendicular pressure.

The theoretical considerations presented above provide
more than a qualitative explanation for the turbulent

FIG. 10. Wave-action magnetic-energy spectrum Ẽb and
kinetic-energy spectrum Ẽu at a = 250 (cf. bottom panels
of Fig. 2). The magnetic energy significantly dominates at
large scales, with a steeper slope that eventually joins the
velocity spectrum at small scales. The inset shows the 2D
k⊥, kz spectrum of magnetic energy, illustrating how it is
significantly dominated by the 2D ∆ = 0 modes (the only
expansion-dominated ∆ < 1/2 modes in our domain).

“cellularisation” observed. We fit the magnetic eddies
highlighted in Fig. 8 using the functional form

Ãz(r) = Ãz0J0(K⊥r) (1− f(r)) + Ãz(rc), (42)

where f(r) is the logistic function f(r) = (1 +
e−κ(r−rc))−1, which is effectively a step function that
accounts for finite diffusive effects through the “logistic
steepness” parameter κ. The result of such a fit is shown
in Fig. 9 and demonstrates that the structures observed
are unequivocally the minimum-anastrophy Alfvén vor-
tices (40).

In Fig. 10, we illustrate the magnetic- and kinetic-
energy spectra, Ẽb and Ẽu respectively. The strong mag-
netic dominance at large scales leads to a steeper mag-

netic spectrum, approximately Ẽb ∝ k
−5/3
⊥ at large scales,

with a flatter velocity spectrum that eventually joins the
magnetic spectrum at small scales. This is qualitatively
similar to those observed at large scales during very low
cross helicity periods in the solar wind [85]. The inset
shows the 2D k⊥, kz magnetic-energy spectrum, illustrat-
ing the dominance of the kz = 0 2D modes at these late
times. The velocity fluctuations seem to be dominated by
regions between the the individual magnetic “cells,” aris-
ing from the coalescence of the Alfvén vortices through
magnetic reconnection, which generate out-flows in the
reconnection exhausts. The Alfvén vortices thus slowly
move around, thereby generating further collisions. As
the simulation progresses, ever larger magnetic structures
are generated via mergers of Alfvén vortices, creating fur-
ther outflows that trigger more merging, thus minimizing
the total energy and causing a slow nonlinear decay (this
is overwhelmed by the expansion-induced growth). This
hierarchical process, which is the basis of 2D MHD de-
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caying turbulence theories [86] is, however, impeded by
the expansion, which acts as an additional damping of
the outflows, hindering the nonlinear dissipation; indeed,
the turbulent dissipation rate in our simulations, which is
measured to scale as ∼a−0.2 at late times, is slower than
in 2D MHD [73, 86]. At large radial distances, these non-
linear effects therefore tend to “freeze up” and the struc-
tures become more and more static in time, growing at
almost the rate predicted from linear theory (∝a1).

The stability of such structures is an interesting ques-
tion that we do not study in detail. The inevitability of
the intense current rings suggests that at sufficiently high
Lundquist number these “ground state” Alfvén vortices
will become tearing unstable and break up into plasmoid
chains confined on rotating rings. Allowing for the fi-
nite length of the structures and/or compressible effects
may also lead to instabilities. Indeed, given the back-
ground mean field, the equilibrium (40) is effectively a
screw pinch, with its nonlinear equilibrium resulting from
the balance between the curvature/tension force of b̃⊥
and the pressure gradient. Such equilibria can be unsta-
ble to kink instability and sausage instabilities [87, 88].
Thus, by assuming the plasma to be incompressible with
constant density, the RMHD model may miss important
effects in their description, particularly instabilities that
could aid in their destruction and enhance nonlinear dis-
sipation.

VI. SOLAR WIND OBSERVATIONS

A. Parameters and scales of the Solar wind

Let us first remind the reader that our simulation pa-
rameters were chosen primarily to test and understand
the dynamics of reflection-driven turbulence, rather than
simulate specific solar-wind streams. In particular, the
large χexp0 and small-scale z̃+ (small L̃+/L⊥) are more
extreme than occurs in the super-Alfvénic solar wind,
while the distance range (up to a = 1000) is wider than
regularly considered in observational studies. Via the
phenomenology of § IVA, this leads to a longer phase of
imbalanced-turbulence decay before the transition to the
balanced phase, thus improving our analysis of these dy-
namics. Moreover, our highly idealized initial conditions
are clearly inappropriate, since significant evolution will
have occurred before reaching RA in the sub-Alfvénic re-
gions of the wind.

We can estimate more realistic parameters using re-
cent PSP results from R ≃ RA [89]. Using L+ ∼ U/fout,
where fout is a characteristic measured frequency the
energy-dominant scale (we take the spectral break in fig-
ure 2 of Ref. [89]), and using the fact that vA ≃ U at

R ≃ RA, one finds

χexp =
z+rms/L̃+

ȧ/a
∼ fout

R

U2
z+rms

≃ 62
fout

2× 10−3Hz

R/(18R⊙)

U/400kms−1

z+rms

vA
. (43)

This estimate ignores many uncertainties, including the
difference between parallel and perpendicular scales, dif-
ferences between streams, and the violation of Taylor’s
hypothesis near the Alfvén point, but should at least give
an order-of-magnitude estimate of the χexp of the z+ fluc-
tuations that dominate the total energy. We see that for
observed fluctuation amplitudes, we expect χexp ≫ 1,
but not nearly so large as the χexp0 chosen for our most
extreme simulation. This further implies that the tran-
sition into the balanced, magnetically dominated regime
will occur at smaller radii than implied by Fig. 1, and the
separations between the scales of z+ and z−, or between
the initial and final scales of z+, will be much smaller.

B. Relation to specific observations in the solar
wind

Here we outline various predictions of reflection-driven
turbulence that can be directly compared to solar-wind
observations. We particularly focus on the importance of
χexp, including the possibility that a correlation of χexp

with wind speed could naturally explain numerous other
well-known observational correlations.

1. Imbalance evolution

There has been substantial previous literature devoted
to understanding the observed evolution of imbalance
(normalized cross helicity) with radius, as well as its cor-
relation with wind speed [90, 91]. A particular focus has
been understanding why the imbalance is observed to
decrease with increasing radius in the solar wind, even
though decaying MHD turbulence simulations (and the-
ory) robustly show (and predict) the opposite [62, 92–94].
Some suggestions invoke interactions between different
streams as the dominant influence [95–97], or parametric
decay of Alfvén waves [98], but we see that the imbal-
ance decrease is naturally explained by reflection with-
out invoking any other physics. While we are certainly
not the first to suggest this [4, 22, 42, 68, 79], our sim-
ulations and phenomenology clarify why this occurs and
provide simple, testable predictions that (to the best of
our knowledge) have not appeared in previous literature.
As argued above, the key parameter governing the im-

balanced decay phase is χexp, the ratio of nonlinear to ex-
pansion rates. The basic phenomenology of § IVA [5, 23]
predicts z̃− ∼ z̃+/χexp, with χexp ∼ (z+/λ+)/(ȧ/a)

seen to scale as χexp ∝ a−3/2 in our simulations where
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Ẽ+ ∼ a−1 and λ̃+ ∼ a1/2 (as inferred from the evolution
of z̃−). This implies that σc evolves as

σc ∼

{
1−χ−2

exp

1+χ−2
exp

, χexp ≳ 1

0, χexp,≲ 1
, (44)

which, for χexp ∼ χexp0a
−3/2, stays in a highly imbal-

anced state near σc = 1 across a wide range of a be-
fore rapidly dropping towards zero around the radius

a ∼ χ
2/3
exp0 (the exact power-law exponent −3/2 makes

no difference to this basic picture). The model thus nat-
urally explains the observed radial dependence of the tur-
bulence from imbalanced to balanced. Similarly, the ob-
served differences between fast and slow streams would
be well explained if fast-wind streams start with larger
χexp0 around RA (and therefore also maintain larger χexp

throughout their evolution). This prediction is easily
testable observationally. It is also physically expected
based on reflection-driven models of the sub-Alfvénic re-
gions [10, 31, 99, 100], in which slower streams arise
because more of the outward-fluctuation energy is dis-
sipated at low altitudes [101], thus giving a lower ampli-
tude at large radii and therefore a lower χexp. For the
stream with χexp0 ≃ 60 discussed above (Eq. (43) [89]),

evolution with χexp ∝ a−3/2 predicts that the fluctua-
tions should reach small σc around a ≈ 15, or a little
beyond 1AU — certainly not unreasonable.

2. The σc-σr “circle plot”

The radial evolution of σc and σr on the “circle
plot” of Fig. 1 provides simple, persuasive evidence that
our reflection-turbulence model captures key aspects of
solar-wind evolution. Observations robustly show that
solar-wind fluctuations are concentrated near the circle’s
bottom-right quadrant edge, evolving from (σc, σr) =
(1, 0) close to the sun towards (σc, σr) = (0,−1) at large
radii [13, 63, 64, 102]. This behavior agrees with our sim-
ulations and phenomenological arguments (Fig. 1): dur-
ing its imbalanced phase, the system remains close to
the circle’s edge because reflection generates z− fluctu-
ations that are anti-aligned with their z+ source (nega-
tive σθ; see Eq. (16)), evolving into the σr ≃ −1 state at
late times as the long-wavelength expansion-dominated
modes start dominating the dynamics (§ V). In addi-
tion, faster wind is observed to be concentrated near the
middle right (large σc, small σr), while slower streams
are concentrated near the bottom (large σr, small σc)
[63, 102], which fits straightforwardly into the idea de-
scribed above that fast-wind streams have larger χexp,
thus spending longer in the imbalanced phase. While we
are, again, not the first to speculate on the relevance of
expansion to these observations [42, 79], we believe ours
are the first simulations to highlight this feature, partic-
ularly the evolution into the balanced σr ≃ −1 state and
the importance of the Elsässer alignment σθ.

3. Fluctuation spectra and the 1/f range

Many years of observations have shown that mag-
netic fluctuations in the solar wind display a 1/f slope
at low frequencies, differing from the steeper f−3/2 or
f−5/3 scalings observed at higher frequencies in the in-
ertial range [103–105]. There is currently no consen-
sus on the origin of this 1/f range. Suggestions range
from its origin in the low corona [104], implying that
it is the energy reservoir that feeds the solar-wind tur-
bulent cascade [106], to it being the result of spheri-
cally polarized fluctuations growing to amplitudes larger
than one [107], or parametric decay of compressive fluc-
tuations [108–110]. Numerous studies [4, 52, 68] have
also shown that reflection-driven turbulence can natu-
rally create 1/f spectra in both the parallel [25] and per-
pendicular [26, 36] directions. Our results agree with the
latter7 through the mechanism described in Refs. [4, 26]
(see § IVB). In line with previous works [26, 36], we find
that the spectral scaling of z̃− is steeper than that of z̃+

through this range, scaling as Ẽ− ∝ k
−3/2
⊥ in our simu-

lations; this is similar (though not identical) to that ob-
served in situ [64, 111], although this general signature is
not unique to the reflection-turbulence model [107, 108].
In addition, since the 1/f range in the model is gener-
ated by the turbulence during the imbalanced phase, at
similar radii, we would expect χexp ≳ 1 regions to ex-
hibit a wider 1/f range than χexp ≲ 1 regions. If we
further apply the hypothesis discussed above, that fast-
wind streams have higher χexp0 than slow-wind streams,
this would naturally explain the well-known observation
that the size of the 1/f range correlates with wind speed
[111, 112]. In this context, it is also worth clarifying that
the extremely wide k−1

⊥ range seen in Fig. 3 is again a con-
sequence of the extreme parameters of the simulation (its
small initial scale and long imbalanced phase). Finally,
the general ideas naturally explain the results of Ref. [64]
that in those (rare) regions with σr ≃ σc ∼ 0, there is
no significant 1/f range, since (given Fig. 1) such regions
are presumably strongly influenced by physics that is un-
related to reflection-driven turbulence.

4. Inverse energy transfer and the split cascade

The most significant qualitative difference between our
energy spectra and previous results is the inverse energy
transfer of Ẽ+ caused by anomalous growth of wave-
action anastrophy. This forces the decay to proceed via a
split cascade, shifting the Ẽ+ ∝ k−1

⊥ range to larger scales
with time in the co-moving frame as it grows out of a
positive-slope infrared spectrum at yet larger scales. The

7 Since the RMHD model is unsuitable for capturing large-
amplitude fluctuations the parallel spectra at these large scales
should not be believed.
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feature is interesting in light of recent observations show-
ing that the 1/f spectrum does not extend to the largest
available scales, especially near the sun [89, 109], instead
developing as the wind propagates outwards [110]. The
surprising, non-trivial prediction of our model is that the
correlation scales of the fluctuations, which lie towards
large-scale side of the 1/f range, should increase with
R faster than expansion (i.e., increase in the co-moving
frame). In addition, the split cascade itself may be di-
rectly observable, with the prediction that the cascade of
z+ should switch from forward to inverse at the largest
scales in imbalanced turbulence (see Fig. 6). Interest-
ingly, back transfer of energy from small to large scales
has been observed in z+ in highly imbalanced streams
[76, 77], although since these observations seem to per-
tain to smaller scales (where we observe a forward cas-
cade of both z+ and z−; Fig. 6), they may be unrelated.
This inverse energy transfer could have broader impli-

cations for solar-wind turbulence and acceleration, par-
ticularly if similar physics also applies in sub-Alfvénic
regions. Close to the Sun, the large gradient of the
Alfvén speed around the transition region should pre-
vent low-frequency Alfvén waves launched from the chro-
mosphere from propagating outwards to large radial dis-
tances [44, 45, 80, 113]. If the chromospheric fluctuations
are turbulent and critically balanced, with little power in
modes with vAk∥ > z±k⊥ [62], this high-pass filter would
also have the effect of filtering out large scales in the per-
pendicular direction, leading to small correlation scales
at the coronal base. The fact that low-frequency waves
end up dominating the solar wind spectrum is therefore
highly non-trivial and naturally suggests that some form
of inverse energy transfer is needed to explain the ex-
istence of large-scale fluctuations at all. The anomalous
growth of wave-action anastrophy could provide one such
mechanism.

5. Solar wind heating

Our study also has application to the understanding
of solar-wind heating, although more work is needed. In
fast-wind streams, the observed radial decrease of the
proton temperature T is slower than in adiabatic cooling,
indicating that the plasma is heated as it moves outward
from the sun [9, 114, 115], presumably by the dissipation
of fluctuations [101, 105, 116, 117]. Such turbulent heat-
ing appears to be less important in slower-wind streams,
although results remain controversial [115, 118, 119].
Within the RMHD EBMmodel, the heating rate per unit
volume is Q = −ρ⟨z+ · D+ + z− · D−⟩/2 , where D±

represents the hyper-viscous terms included to dissipate
energy at small scales (Eq. (10)). Converting to wave-
action variables and using the total energy conservation
(8) (see also Ref. [54]) gives

Q = −ρ
ȧ

a

(
∂Ẽ

∂a
+

Ẽr

a

)
. (45)

During the imbalanced phase at high χexp, when Ẽr ≪
Ẽ ≈ Ẽ+, the phenomenology of §IVA predicts Ẽ+ ∝ a−1

and ρ ∝ a−2, so that Q ∝ a−5. Then, as the system tran-
sitions into the balanced phase, the heating rate drops
significantly as the system becomes dominated by slowly
evolving Alfvén vortices. At late times we measure a
small residual nonlinear dissipation that causes Ẽ ∝ a0.8

(rather than the Ẽ ∝ a1 predicted by linear theory), im-
plying a heating rate that flattens to Q ∝ a−3.2.
Whether these results are consistent with observations

remains unclear. Most observational studies have in-
ferred heating rates by fitting power-law profiles to the
observed temperatures, then comparing the inferred scal-
ings to “adiabatic” profiles that would occur in the ab-
sence of heating: T ∝ R−4/3 for an isotropic fluid (i.e., if
the perpendicular and parallel temperatures are well cou-
pled, T⊥ ∼ T∥), or T⊥ ∝ R−2 for a collisionless plasma

(or more generally, T⊥ ∝ B). A Q ∝ a−α heating pro-
file with α ≥ 5 (α ≥ 13/3 for an isotropic fluid) is too
steep to lead to a power-law temperature profile that dif-
fers from the adiabatic profile at asymptotically large R;
however, depending on the magnitude of Q, almost any
local scaling of T can be realized (it just does not vary
as a power law over a wide range in R). This, combined
with the effects of averaging over different streams with
different χexp, makes it unclear whether the difference be-
tween the high-χexp prediction (Q ∝ a−5) and the classic
result that α ≈ 3.8 → 4 [115, 118, 119] should signal the
importance of other physics, or not. Indeed, more com-
plex models based on a similar phenomenology [100, 120],
reproduce observed temperature profiles reasonably well
out to ≃1AU. Also of interest is the transition around
χexp ∼ 1, where we predict that the decrease in heat-
ing rate with radius should slow to eventually approach
Q ∝ a−3 as the heating stops. If slow-wind streams have
smaller χexp as suggested above, the general trend could
be consistent with the observation of closer-to-adiabatic
evolution in slow wind (a flatter power-law profile of Q
will not be measurable if its magnitude is too small), as
well as recent measurements showing the much greater
importance of wave heating in fast, compared to slow
streams [101].

Overall, while plausibly consistent, more work is
needed, particularly to quantify the relevance reflection-
driven turbulence compared to other effects including
pick-up ions at larger radii [121] and stream interactions
[95] or parametric decay [29, 33, 98] in highly imbalanced
regions.

6. Alfvén vortices

The final phases of our simulations are characterized
by isolated magnetically dominated nonlinear solutions
(Alfvén vortices), in which magnetic tension balances
the total pressure. These structures are dominated by
expansion, so not expected to be critically balanced in
the usual sense (in our simulations they are truly 2-D),
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with sharp boundaries and current rings that separate
them from the surrounding more quiescent plasma (see
Fig. 8). Although the Parker spiral and compressible and
finite-amplitude effects are likely important for their evo-
lution, we suggest that they provide a natural explana-
tion for the so-called “Magnetic Field Directional Turn-
ings” (MFDTs) observed in the solar wind at large radii,
whose origin has challenged a clear theoretical explana-
tion so far [63, 85]. The observed structures are highly
magnetically dominated, with an approximate balance
between thermal and magnetic pressure and very sharp
boundaries in B [85], just as observed in Fig. 8. This
explanation suggests that MFDTs and Alfvén vortices
[47, 122] are the same physical entity whose origin is
reflection-driven turbulence. It could be tested by sev-
eral means such as: (i) a direct fit observed structures
at large radii to Eq. (40), perhaps with a focus on high-
latitude regions where the Parker spiral is less dominant;
(ii) by examining their parallel scales, which should sat-
isfy ∆ ≲ 1/2, thus indicating they are expansion dom-
inated; and (iii) by examining the radial dependence of
δB⊥/B, which should grow ∝R until reaching large am-
plitudes (δB⊥/B ∼ 1, where our RMHD approximation
is no longer valid).

VII. CONCLUSION

This work has presented a detailed computational and
phenomenological study of reflection-driven turbulence,
which is thought to play a key role in the heating and
acceleration of the solar wind [100], as well as in other
magnetized, highly stratified environments such as accre-
tion disk coronae [33]. We have approached the prob-
lem from the simplest standpoint possible, using the
reduced-MHD expanding box model (EBM), which cap-
tures Alfvénic (incompressible and perpendicular) dy-
namics and assumes a constant wind speed U that is
faster than the Alfvén speed vA. By enabling very
high simulation resolutions and clarifying the analysis,
this has helped to reveal a rich and nontrivial dynam-
ics that displays features reminiscent of both forced- and
decaying-turbulence paradigms. In order to explore these
features in depth, our study has differed from most previ-
ous works by deliberately not attempting to match solar-
wind parameters, instead focusing on understanding the
basic physical processes. While highly idealized, our re-
sults can plausibly explain a range of disparate observa-
tions from in-situ spacecraft (see § VI), giving us some
confidence in the value of the computational approach
and the utility of the theoretical framework.

Our most surprising novel results relate to the ex-
istence of strong inverse energy transfer, with the de-
cay of the dominant outward-propagating fluctuations
proceeding via a split cascade that transfers energy to
small and large scales simultaneously. We argue that
this results from an anomalous conservation law of the
“wave-action anastrophy” Ã (the box-averaged parallel

vector potential squared), which can grow due to the ef-
fects of expansion in the strongly turbulent system. We
provide a heuristic theoretical argument justifying this
(§ IVD) based on linear-wave dynamics and the obser-
vation that the Elsässer fields z± remain nearly aligned
(z− ∝ −z+) and anomalously coherent (effectively prop-
agating in the same direction). This latter property,
which results from the suppression of collisions between
Alfvénic fluctuations, as diagnosed in the simulation via
frequency spectra (§ IVC), leads to a turbulent decay
that remains strong even though the minority fluctua-
tions (z−) have very low amplitude [26, 68]. Using these
core ideas, the radial evolution of the energy, imbalance
(normalized cross helicity), and residual energy are anal-
ysed via a heuristic phenomenology based on previous
works [5, 23, 24], extended to account for the radial evo-
lution of the different scales of z± (§ IVA). We argue
that a key parameter is χexp, which, as the ratio of the
expansion/reflection timescale to the nonlinear timescale,
naturally controls the reflection-driven turbulent decay.
Overall the phenomenology provides a reasonable match
to most simulation results, although there remain some
unresolved discrepancies.
A secondary result of our work concerns the long-term

evolution of the system at large radii, as relevant to the
outer heliosphere and regions of slower wind (see below).
Our simulations show that super-Alfvénic reflection-
driven turbulence is characterized by two distinct phases,
separated by the radius at which χexp ∼ 1 where the
system becomes balanced (z− ∼ z+) and dominated by
long-parallel wavelength modes for which expansion over-
whelms the Alfvénic restoring force. From this radius
onwards, nonlinear interactions slow significantly as the
system cellularizes into a collection of nonlinear “Alfvén
vortex” solutions separated by sharp current-ring bound-
aries. The structures, which are strongly magnetically
dominated, slowly move and merge while their normal-
ized amplitude |B⊥|/|B| grows rapidly due to expansion.

A. Observations

Despite the simplicity of our RMHD expanding box
and the many important physical effects that are unjus-
tifiably neglected (see §VIIB below), its predictions seem
to explain a range of different well-known solar-wind ob-
servations. In §VI, we outline a number of these ideas in
a way that should be understandable without a detailed
reading of the main text, as well as making more specific
predictions that may help to further test and refine the
reflection-driven turbulence paradigm. In summary, the
model naturally explains the observed decrease in turbu-
lence imbalance with heliocentric radius [91], as well as its
correlation with wind speed if χexp is statistically lower
in slower streams, as expected from flux-tube expansion
models [31]. For similar reasons, observations of the clas-
sic σc-σr “circle plot” [102] are reproduced numerically
and understandable by appeal to the simple phenomenol-
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ogy and the dominance of long-wavelength structures in
the balanced regime. The transition from imbalanced
to balanced turbulence also entails a slow shutting off
of the turbulent heating, which seems plausibly consis-
tent with observations of radial and stream dependence
of solar-wind heating rates [101, 118], though more de-
tailed models and observations are needed [120]. Our
simulations, as well as previous literature on the subject
[4, 26, 68], reproduce the well-known 1/f -range spectrum
at large scales (E+(k⊥) ∝ k−1

⊥ in the simulation). Be-
cause of the inverse energy transfer, this forms naturally
from smaller-scale fluctuations in the initial conditions,
migrating to larger scales in the co-moving frame with
time. This inverse energy transfer may be observable
through its radial dependence or via direct measurements
of the turbulent flux, and could have interesting conse-
quences for explaining the dominance of low-frequency
fluctuations in observations, even though they should be
filtered out by the large Alfvén-speed gradients in the up-
per chromosphere. Finally, the magnetically dominated
Alfvén vortices, which inevitably dominate the solutions
at large a, seem to bear close resemblance to “Magnetic
Field Directional Turnings” [85], which are observed at
large heliocentric distances.

B. Uncertainties and future work

Due to both the highly idealized model and the details
of the simulation design, our study is beset with a number
of significant uncertainties. While we do not believe that
these fundamentally invalidate our main results, they are
nonetheless important to acknowledge and, hopefully, to
rectify in future work.

The basic phenomenology of § IVA [5] does not sat-
isfactorily explain some features of the the imbalanced-
phase turbulence, and a priority of future work should
be to understand this “platonic” form of reflection-driven
turbulence in the expanding box. Of particular difficulty
is the relationship between the growth of z̃−, which we
observe to be significantly (∝a1/2) faster than the stan-
dard prediction [23, 24], and the evolution of the dom-

inant scales of z̃+ and z̃− (λ̃+ and λ̃−). The growth

of λ̃+ and faster-than-expected growth of z̃− accelerate
the transition into the balanced regime, thus decreasing
the overall energy decay and heating, so these uncertain-
ties pertain directly to the global energetics of the solar
wind. It may be that some of these discrepancies with
the model relate to our initial conditions, and indeed we
have found some dependence of the results on the ini-
tial conditions (e.g., the infrared spectrum and parallel
scales) that remain incompletely understood. Another
important goal of future work should be to better ex-
plore the dependence on ∆box, which sets the range of
parallel wavelengths available to the system. In our sim-
ulations, which fixed ∆box = 10, only the kz = 0 2-
D mode is linearly expansion dominated (non-Alfvénic),
but in reality there should be a continuum of such modes

down to the scales where global effects become important
(kz ∼ 1/R). Decreasing ∆box is equivalent to increasing
the parallel box scale Lz, and therefore increases the sim-
ulation cost, but this should be explored in future work.
An additional priority for future work is to elucidate the
physical mechanisms that give rise to the E+(k⊥) ∝ k−1

⊥
and E−(k⊥) ∝ k

−3/2
⊥ scalings shown in the bottom panel

of figure 3, which are not explained by existing cascade
models for imbalanced MHD turbulence [e.g. 4, 36, 66].

Moving beyond the uncertainties in interpreting the
RMHD EBM results, there exist many uncertainties re-
lated to the model itself. Although its simplicity is ap-
pealing, RMHD obviously cannot capture any compres-
sive physics or the physics of the large-amplitude spher-
ically polarized fluctuations that are routinely observed
in situ [60]. The latter can be rectified via full MHD
simulations [41], but the former arguably cannot, given
that the solar wind is a collisionless plasma with compres-
sive fluctuations that may or may not be well described
by fluid models [50, 123]. These issues, as well as our
neglect of the Parker spiral, are likely particularly im-
portant for our results related to Alfvén vortices, since
these structures are inherently compressive (though in
total pressure balance). There also exist various subtle
issues related to the EBM, motivating future studies with
global flux-tube models [26, 61] that are more focused
on super-Alfvénic regions. The EBM should accurately
capture dynamics only in the limit where a reflected z−

cannot propagate further than one box length, because
otherwise this z− could re-encounter the same z+ multi-
ple times (clearly an unphysical effect). This likely limits
its applicability to study of the strong-turbulence regime
where z− is anomalously coherent. Another effect that
cannot be captured in the EBM due to its fixed paral-
lel size relates to the increased range of long-wavelength,
expansion-dominated modes that become available to the
system at increasing radius as it transitions into the bal-
anced regime (see §VA).

Finally, a key omission, which has been made purely for
the sake of simplicity, is the recently discovered “helicity
barrier” effect [124]. The helicity barrier suppresses dis-
sipation via electron heating due to finite-Larmor-radius
effects in β ≲ 1 turbulence, channeling the turbulent flux
into ion-cyclotron heating only once the fluctuations can
reach sufficiently small parallel scale [125]. By suppress-
ing the dissipation of z+, the helicity barrier could sig-
nificantly change our results in β ≲ 1 regions, bringing in
direct dependence on the parallel scales. Therefore our
results here can only apply to either the saturated phase,
in which the energy flux into ion-gyroradius scales is bal-
anced by ion heating through the cyclotron resonance
[126], or to β ≳ 1 regions. Understanding the impact of
the helicity barrier on reflection-driven turbulence should
be a priority for future work.
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Appendix A: Anastrophy dissipation in linear waves

In §IVD, we argued that anomalous wave-action anas-
trophy growth places a strong constraint on reflection-
driven turbulent dynamics, forcing the fluctuations to
rush towards larger scales as they decay. As part of this
argument, we pointed out that linear propagating waves
with ∆ > 1/2 (kzvA0 > ȧ/2) are particularly efficient

at destroying anastrophy via the term ⟨ζ̃+∂z ζ̃−⟩. The
corollary is that a system with either (i) smaller z̃−/z̃+

than a linear wave, or (ii) wave phases that are scram-
bled compared to the linear wave, will grow wave-action
anastrophy faster than the linear (dissipationless) sys-
tem. In this appendix, we examine the cause of this lin-
ear anastrophy dissipation by computing ⟨ζ̃+∂z ζ̃−⟩ for a
generic collection of linear waves, demonstrating explic-
itly how it cancels the wave-action anastrophy growth
term (aÃ in Eq. (27)). Of course, this is no surprise —

given that Ã does not grow on average in a linear prop-
agating (∆ > 1/2) wave, it is inevitable — nonetheless,
aspects of the calculation are interesting and worth pre-
senting.

The potentials ζ̃± evolve according to effectively the
same linear equation as z̃± (see §VA):

ȧ
∂ζ̃±

∂ ln a
= ±vA0

∂ζ̃±

∂z
− ȧ

2
ζ̃∓. (A1)

Assuming plane waves with ln a as the time variable,
ζ̃±(x, t) = ζ̃±k eik·x−iω ln a, the linear eigenfrequencies are

Eq. (37) (ω± = ±
√

∆2 − 1/4) with eigenmodes ξ±k =

ζ̃±k /2 ± iζ̃∓k (∆ −
√

∆2 − 1/4). Inverted, this latter ex-
pression gives

ζ̃±k = 2
ξ±k ∓ 2iΘξ∓k
1− 4Θ2

= f±
k ξ+k + g±k ξ

−
k , (A2)

where Θ ≡ ∆−
√
∆2 − 1/4 < 1/2 for ∆ > 1/2, with Θ ≈

(8∆)−1 for ∆ ≫ 1, and the f±
k and g±k coefficients are

defined for notational convenience below. Taking general
initial conditions ζ̃±0,k (equivalently ξ±0,k), we compute the

right-hand side of the anastrophy equation (27), to give

vA0

2
⟨ζ̃+∂z ζ̃−⟩ = −vA0

2

∑
k

ikz

(
f+ξ+0,ke

iω+t + g+ξ−0,ke
iω−t

)
×
(
f−ξ+0,ke

iω+t + g−ξ−0,ke
iω−t

)∗
=− vA0

2

∑
k

ikz

[
f+
k (f−

k )∗|ξ+0,k|
2 + g+k (g

−
k )

∗|ξ−0,k|
2
]

=vA0

∑
k⊥,kz>0

kz Im
[
f+
k (f−

k )∗|ξ+0,k|
2 + g+k (g

−
k )

∗|ξ−0,k|
2
]
.

(A3)

To arrive at the second line, we have additionally av-
eraged over (or ignored) the wave periods to eliminate

the rapidly oscillating cross terms (∝e2iω
±
), which will

cause the anastrophy to oscillate but cannot affect its
longer-term evolution. Physically, this shows that any
linear evolution necessarily picks up a correlation be-
tween ζ̃+ and ∂z ζ̃

− (proportional to Im[f+
k (f−

k )∗] and

Im[g+k (g
−
k )

∗]) because the eigenmodes ξ±, which prop-

agate in the ±ẑ direction, contain both ζ̃+ and ζ̃−.
From Eq. (A2), we see that f+

k (f−
k )∗ = g+k (g

−
k )

∗ =
−8iΘ/(1 − 4Θ2)2, which (being imaginary and nega-
tive) shows that this correlation is such that linear waves
are maximally efficient at destroying anastrophy (for a

given magnitude of ζ̃±). The obvious corollary is that if

the phase of ζ̃− is modified compared to that of ζ̃+ by
reflection-driven turbulence (or anything else), the wave-
action anastrophy will be destroyed less efficiently than
it is in a linear wave (again, for a given magnitude of ζ̃±).
One can continue the calculation to work out the mag-

nitude of (A3), but this calculation is most illuminating

if we focus on the specific case of ∆ ≫ 1 and ζ̃−0,k = 0.

These imply ξ+0,k = ζ̃+0,k/2, ξ
−
0,k = −iΘζ̃+0,k ≈ −iζ̃+0,k/8∆,

such that |ξ−0,k|2 ≪ |ξ+0,k|2 can be ignored in (A3). Thus,

vA0

2
⟨ζ̃+∂z ζ̃−⟩ ≈ −vA0

∑
k⊥,kz>0

kz
8Θ

(1− 4Θ2)2
|ζ̃+0,k|2

4

≈ − ȧ

4

∑
k⊥,kz>0

|ζ̃+0,k|
2 ≈ − ȧ

2

∑
k

|Ã0,k|2

= −ȧÃ(t = 0), (A4)

where in the final steps we define the initial Ãz as Ã0,k

and use Ã0,k ≈ ζ̃+0,k/2. As expected, we have found that

the vA0⟨ζ̃+∂z ζ̃−⟩/2 term is exactly what is needed to can-

cel the expansion-induced growth term, ȧÃ in Eq. (27),

such that Ã does not change in time (averaged over the
wave periods). While not at all surprising, the calcula-
tion demonstrates the apparent “fine tuning” of the linear
solution when viewed from this perspective, highlighting
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how its disruption will necessarily decrease |⟨ζ̃+∂z ζ̃−⟩|
and therefore drive wave-action anastrophy growth.

Appendix B: Adaptive viscosity implementation

The range of energies and scales involved in our simula-
tions cover many orders of magnitude, while also differing
significantly between z̃+ and z̃− in the imbalanced phase.
This poses a challenge for choosing the (hyper)-viscous
dissipation coefficients ν± to dissipate z̃± at small scales,
because the nonlinear times, which balance the dissipa-
tion times to set the dissipation scale of the turbulence,
change significantly over the course of the simulation
(and differ between z̃+ and z̃−). Thus, rather than at-
tempting to choose a functional form for ν±, which would
require knowing a priori the solution, we instead choose
the co-moving dissipation scales, k̃diss⊥ and kdissz in the
perpendicular and parallel directions, respectively, and
adjust the dissipation coefficients ν±⊥ and ν±z based on

the local nonlinear time.

The idea is that the plus and minus energy fluxes ar-
riving at k̃diss⊥ and kdissz are dissipated in one time-step
δt± [127]:

Ẽ±(k̃diss⊥ )

δt±
∼ ν±⊥(k̃diss⊥ /a)6Ẽ±(k̃diss⊥ ), (B1)

Ẽ±(kdissz )

δt±
∼ ν±z (kdissz vA/vA0)

6Ẽ±(kdissz ), (B2)

where δt± is fixed by the maximum value of |z̃∓| by the
standard Courant stability condition,

δt± =
CFL

a−3/2πn⊥max|z̃∓|/L̃⊥
(B3)

(here CFL is the standard Courant coefficient). We

choose, k̃diss⊥ = 3/4(πn⊥/L̃⊥), k
diss
z = 3/4(πnz/Lz0) and

the coefficient CFL = 1.
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